• Title/Summary/Keyword: drying energy

Search Result 536, Processing Time 0.031 seconds

Far Infrared Rays Drying Characteristics of Tissue Cultured Mountain Ginseng Roots (산삼배양근의 원적외선 건조특성)

  • Li, H.;Kwang, T.H.;Ning, X.F.;Cho, S.C.;Han, C.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • This study was conducted to investigate the drying characteristics of tissue cultured mountain ginseng roots. The far infrared rays dryer of a double blast system used for this experiment can control the drying parameters such as far infrared heater temperature and air velocity. The far infrared rays drying tests of tissue cultured mountain ginseng roots were performed at air velocity of 0.4, 0.6, 0.8 m/s, under drying air temperature of 50, 60, and $70^{circ}C$, respectively. The results were compared with one obtained by the heated air drying method. The drying characteristics such as drying rate, color, energy consumption, saponin components and antioxidant activities were analyzed. The results showed that the drying rate of far infrared rays drying was faster than that of heated air drying and due to high temperature of drying air and fast air velocity, the far infrared rays drying of double blast type was superior to the heated air drying. The value of the color difference for heated air drying was 10.11${\sim}$12.99 and that of far infrared rays drying was in the range of 7.05${\sim}$7.54, which was in the same drying condition, also energy consumption of far infrared rays drying was in the range of 3575${\sim}$6898 kJ/kg-water. At the same time, the antioxidant activities using far infrared rays drying were higher than those using heated air drying.

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.

A study on the Drying Characteristics of NIR Dryer (근 적외선 건조기의 건조특성에 대한 연구)

  • Jang, Yeong-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • Near Infrared Ray (NIR) are primarily of interest to the high energy physicist. It is the intermediate portion of the spectrum, which extends from approximately 0.8 to 1.5 ${\mu}m$ and include a portion of the all of infrared, that is thermal radiation and is pertinent to heat transfer. It is important to study that temperature distribution of the drying materials by surface encompasses a range of NIR wave lengths. This study is to investigate the characteristics of NIR dryer by experimental results. it was made a comparison with various textiles, velocity ratio and distance of lamp and textiles. In case of spongy type textile the drying performance is the superior of all. The 0.15m distance drying effect of improvement 30% more than 0.26m distance between lamp and textiles. As the contained water increases, the drying speed for textile can be increased.

Effect of Operating Conditions on Drying Efficiency for Coal Drying Facilities in a Steel Making Plant (제철플랜트용 석탄건조설비에서 운전조건 변경이 건조성능에 미치는 영향)

  • Jeon, Hae-Seak;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2009
  • Increase of consumption in limited coal reserves leads prices surging. As a result, iron works which produce products with coal are in difficulties. Accordingly, it is required a lot of research of using non-caking coal that is relatively low cost and has abundant reserves. Direct drying and indirect drying are two major methods of drying the coal. Recently, to minimize the needed calories and to save energy, using fluidbed or fluidizing method is a recent main trend of minimizing the size of the facility and maximizing energy efficiency. However there is also disadvantage such as increasing facility investment because of installing additional facilities in the latter part. In this study, we will have theoretical researches on the indirect drying method with heat exchange system which have been traditionally used. As a result it is expected to increase the efficiency of the facility operation.

  • PDF

Experimental Study on the Drying Process in the Two-Cycle Heat Pump Dryer (2-사이클 열펌프 건조기에서 건조과정에 대한 실험적 연구)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Kim, Jong-Ryul;Lee, Sang-Ryoul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.636-641
    • /
    • 2008
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison to conventional air drying. The heat pump dryer is usually operated at the temperature less than $50^{\circ}C$ and the drying temperature is limited to the operating temperature of the heat pump system. In order to increase the drying temperature, the special box-type heat pump dryer has been developed. The dryer uses the two-cycle heat pump system which has the two heat pump cycles for high and low temperature heating. The high temperature cycle uses the refrigerant 124 to get the temperature greater than $80^{\circ}C$ and the low temperature cycle uses the refrigerant 134a. The drying experiment has been carried out to figure out the performance of the dryer with the selected drying material.

  • PDF

Experimental Studies for Solar Drying System of Agricultural Products(I) - Solar drying characteristics for radish - (태양열 건조 시스템에 관한 실험적 연구(I) - 무우절편의 태양열 건조 특성 -)

  • Koh, Hak-Kyun;Kim, Yong-Hyeon;Song, Dae-Bin;Kim, Man-Soo
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.9-20
    • /
    • 1991
  • Experiments for drying radish were carried out to analyze the drying characteristics and quality evaluation between solar heated-air drying and natural air drying system. Solar heated-air drying system consists of a small fan, a solar air heater and a tunnel dryer. Simulation model for thermal environments of solar collector was developed to investigate the effect of solar radiation and airflow rate on thermal performance.

  • PDF

Heat Treatment and Drying Methods of Small-Notched Bamboo for Vertical Flute (단소용 대나무재의 열처리 및 건조)

  • 변희섭;오승원;공태석;김종만
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.3
    • /
    • pp.10-17
    • /
    • 2002
  • This study was carried out to investigate a heat treatment condition and suitable drying schedule of bamboo material(Phyllostachys nigra var. henonis) for a vertical flute with small-notched bamboo. It is very important to prevent drying defects during its drying process. We investigated the effort of heat treatment the most suitable drying schedule for small-notched bamboo vertical flute without drying defects in this research. A direct heat treatment method and drying conditions of 3($20^{\circ}C$ 65%, $40^{\circ}C$ 40%, and dry at air condition) were applied to the Bamboo specimen that felled in several areas for a month. The result suggested that the most suitable drying schedule with the less split and the shortest time was to dry at $40^{\circ}C$, 40% condition and it was useful to direct heat-treatment because of reducing the number and size of split during drying bamboo.

  • PDF

Low Temperature Drying Simulation of Rough Rice (벼의 저온건조 시뮬레이션)

  • Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • This study was conducted to verify the simulation model through the drying test, and investigate effect of factors, such as temperature of drying air, airflow rate, and velocity of the airflow, on the drying. The low temperature drying simulation model was developed based on the circulation dry simulation model presented by Keum et al. (1987), and by modifying low temperature thin layer drying model, equilibrium moisture content model, latent heat of vaporization model, and crack ratio prediction model. The heat pump and experimental dryer with a capacity of 150kg were used for the test. The RMSE between the predicted and measured value was 0.27% (drying temperature), 0.15% (crack ratio), and 2.08% (relative humidity), so the relevance of the model was verified. In addition, the effect of drying temperature, airflow rate, and velocity of the airflow on the drying was examined. The experimental results showed that the crack ratio at drying temperature of $25{\sim}40^{\circ}C$ was allowable. Moreover, at below $30^{\circ}C$, variation of the crack ratio was slight, but drying time was delayed. Given these results, the drying temperature of over $30^{\circ}C$ was effective. As the airflow rate increased, required energy dramatically increased. Whereas drying rate slowly increased, so loss of drying efficiency was caused. Considering these results, the dryer needed to be designed and adjusted to lower than $30\;m^3/min{\cdot}ton$. As velocity of the airflow increased, required drying energy increased when the velocity of the airflow was over $5\;m^3$/hr, while crack ratio and drying rate showed little variation.

Drying Efficiency of Betung Bamboo Strips (Dendrocalamus asper) Based on Different Solar Drying Oven Designs

  • Ihak SUMARDI;Anggit Kusuma Dewan DARU;Alfi RUMIDATUL;Rudi DUNGANI;Yoyo SUHAYA;Neil PRIHANTO;Rudi HARTONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Betung bamboo (Dendrocalamus asper) is used as a building and handicraft material in Indonesia; however, bamboo needs to be dried to increase its stability. This study aimed to evaluate the efficiency of drying bamboo using solar energy and different drying oven designs. The betung bamboo pieces were dried using a direct solar dryer (direct drying) and an indirect solar dryer (indirect drying) and then the decrease in levels that occurred based on the relative humidity (RH) and temperature values achieved in the two dryers were compared. The highest average temperature in the direct indirect drying oven compartment was 60.1 ± 13.1℃ with 19.9 ± 16.4% RH and 60.2 ± 11.9℃ with 19.5 ± 15.5% RH, respectively. The drying defect in indirect drying was lower than that in direct drying, and indirect drying had a 61.7% greater average water loss than direct drying with significant difference (95%, analysis of variance) based on water loss/compartment volume parameters. Thus, the solar drying oven can be used to air-dry bamboo (14%) for 7 d from an initial moisture content of 70%-80% in bamboo strips. The results of this research can be used for small-scale bamboo processing industries that have limited use of electrical energy with quite good results.

Energy Efficiency of Fluidized Bed Drying for Wood Particles

  • Park, Yonggun;Chang, Yoon-Seong;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Jang, Soo-Kyeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.821-827
    • /
    • 2016
  • This study evaluates the economic feasibility of industrializing fluidized bed dryer for wood particles. The theoretically required heat energy and energy efficiency were evaluated using a pilot scale fluidized bed dryer. When Mongolian Oak wood particles with 50% initial moisture content were dried in the fluidized bed dryer with air of $70^{\circ}C$ air circulating at 1.1-1.3 m/s for 30 minutes, the total theoretically required heat energy was 2,177 kJ. Of this, 1,763 kJ (approximately 81.0%) was used to heat the air flowing in from outside the dryer and 386 kJ (approximately 17.7%) was used to heat and remove water from the wood particles. Actual energy consumed was 7,560 kJ, giving energy efficiency of 28.8%. Thus, to industrialize a drying method such as fluidized bed drying, where the dryer volume is significantly larger than the volume of wood particles, it is necessary to minimize energy loss and maximize energy efficiency by designing the dryer size considering the amount of wood particles and choosing a suitable air circulation rate.