• Title/Summary/Keyword: dry leaves

Search Result 915, Processing Time 0.033 seconds

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

Effects of Seed Storage Methods and Shading on Seed Germination and Seedling Growth of Endangered Species, Iris dichotoma and Iris setosa (종자저장방법 및 차광처리가 희귀식물 대청부채와 부채붓꽃의 발아와 유묘생육에 미치는 영향)

  • Lee, Su Gwang;Kim, Hyo Yun;Lee, Ki Cheol;Ku, Ja Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • This study was conducted to determine the effects of seed storage method ($-20^{\circ}C$, $2^{\circ}C$ dry, $2^{\circ}C$ wet 30 days, $2^{\circ}C$ wet 60 days, stratification and room temperature) and shading treatment(control, 50%, 80%) on seed germination, seedling growth of endangered species, Iris dichotoma and Iris setosa. As a result, seed germination rate of I. dichotoma was the highest at 75% when seed were stored at $2^{\circ}C$ wet 60 days and then sown under non-shading condition. The seed of I. dichotoma belong to intermediate seed. Seed germination rate of I. setosa was the highest at 95% when seed were stored at $2^{\circ}C$ wet 60 days and then sown under 80% shading condition. The seed of I. setosa belong to recalcitrant seed. Seedlings of I. dichotoma and I. setosa showed not only the best seedling quality but also seedling vigor index in seed stored at $2^{\circ}C$ wet 60 days under non-shading condition, with the growth characteristics of plant height (6.4, 7.2 cm), number of leaves (3, 4), leaf width (4.6, 3.2 mm), leaf length (5.7, 6.8 cm), fresh weight (aerial/root part; 144/260, 97/153 mg), dry weight (aerial/root; 31/20, 17/17 mg) and seedling vigor index and modified seedling vigor index (13,895/9,479, 13,256/8,668). In this research, I. dichotoma and I. setosa seed were stored at $2^{\circ}C$ wet 60 days, and then sown in non-shading condition, seed germination rate was more than 75%, 90%, respectively, and production of superior quality seedlings.

Effect of Amount and Time of Nitrogen Top-dressing at Seeding Dates on Growth and Grain Yield of Soybeans (대두(大豆)의 파종기별(播種期別) 질소추비량(窒素追肥量)과 추비시기(追肥時期)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, Chung Yeol;Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • This experiment was conducted to investigate the effect of nitrogen top-dressing and Jangyeopkong was planted under two different seeding time (single cropping-May 15, after barley cropping-June 18), four levels of nitrogen top-dressing (0, 3, 6, 9 kg/10a) and two times of nitrogen top-dressing (Hilling time, Flowering Time). The results obtained are summarized as follow: 1. The days to flowering and maturity were delayed a day longer in hilling times than flowering times of nitrogen top-dressing. 2. The number of nodes of main stem and length of internodes didn't show significance among treatments. But, the number of nodes of branches was much higher when the soybean was planted on May 15, and were higher hilling time than flowering time as the amount of nitrogen top-dressing increased. Especially, the number of nodes of branches was high when 6kg of nitrogen was applied during hilling time. 3. The fresh and dry weight of stem and leaves at 10, 25 and 40 days after flowering were increased by increasing the amount of nitrogen top-dressing. More apparent effect of nitrogen was attained high significant when nitrogen was applied at the time of hilling rather than flowering time. 4. The number and fresh weight of nodule, and dry weight were apparently decreased after barley and were decreased according to the increasing the amount of nitrogen top dressing. The degrees of decreasing was more apparent in the hilling time than in the flowering time. 5. The number of pods per plant, and number and weight of grain per plant were higher when the soybean was planted on May 15, the amount of top dressing increased and hilling time rather than flowering time. Especially, yield component were highest when 6kg of nitrogen was applied during hilling time. Also, the grain yield per 10a showed high significance among treatment, and were high when 6kg of nitrogen was applied during hilling time.

  • PDF

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Effects of Covering Materials on Prevention of Freeze Damage and Labor Saving in Saururus chinensis Baill During Wintering (삼백초의 월동 피복재 종류별 동해방지 및 노동력 절감효과)

  • Nam, Sang-Young;Kim, In-Jae;Kim, Min-Ja;Yun, Tae;Lee, Cheol-Hee;Park, Sung-Gue;Lee, Woo-Young;Kim, Hong-Sig
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.287-292
    • /
    • 2005
  • To investigate the effects of heat conservation materials on freeze damage and weed occurrence during overwintering in Saururus chinensis, Temperature difference was $6.9^{\circ}C$ in chaff, and was lower than those ranged from 9.7 to $14.4^{\circ}C$ in other materials. Heat conservation index, calculated from average temperatures below $-10^{\circ}C$ of earth's surface during the winter, was higher $1.7^{\circ}C\;and\;1.5^{\circ}C$ in chaff and lagging, respectively than in straw. Preservation of water is greater $9.6{\sim}26.1%$ in covering than in open field, and it increased in the order of lagging > chaff > straw among heat conservation materials. The survival rate of rhizome was increased in the order of 99% in lagging > 75% in chaff > 58% in straw, 32% in open field after overwintering, budbreak began fast, and the numbers of total budbreak per unit area were greater 22 times in lagging than 35.0 units in open field. Weeds occurrence was decreased in covering, i.e., $12.0{\sim}33.2\;units/m^2,\;7.3{\sim}10.7\;kg/10a$ of dry weight, and $5.6{\sim}6.4\;hours/10a$ of labor input compared with $157.2\;units/m^2,\;28.9\;kg/10a$ of dry weight, and 65.7 hours/10a of labor input in open field. Growth of top part was better in covering than in open field, and the number of tillers per unit area showed $347{\sim}396$ compared with 293 in open field. Marketable yields of dried stem and leaves and rhizome were higher $69{\sim}87%\;and\;58{\sim}88%$, respectively in covering than in open field, and among heat conservation materials, those were highest in lagging.

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations (염화칼슘 제설제 처리농도에 따른 참억새의 내염성 및 침출수 평가)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.61-67
    • /
    • 2019
  • The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.

Assessment of Productivity and Vulnerability of Climate Impacts of Forage Corn (Kwangpyeongok) Due to Climate Change in Central Korea (국내 중부지역에 있어서 기후변화에 따른 사료용 옥수수의 생산성 및 기후영향취약성 평가)

  • Chung, Sang Uk;Sung, Si Heung;Zhang, Qi-Man;Jung, Jeong Sung;Oh, Mirae;Yun, Yeong Sik;Seong, Hye Jin;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.105-113
    • /
    • 2019
  • A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid('Kwangpyeongok') were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.

Growth Characteristics and Visible Injury of Container Seedling of Pinus densiflora by Fertilization Level (시비수준별 소나무 용기묘의 생장 특성 및 가시적 피해)

  • Cha, Young Geun;Choi, Kyu Seong;Song, Ki Seon;Gu, Da-Eun;Lee, Ha-Na;Sung, Hwan In;Kim, Jong Jin
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.66-77
    • /
    • 2019
  • The present study investigated pine trees, which forms a major plantation species in Korea, with the objective of improving the survival rate of pine trees after planting. Growth responses and characteristics were assessed by controlling the level of fertilizer application, which is a basic controlling the growth of pine seedlings, to identify the optimal fertilization treatment. Pine tree seedlings were grown in 104 containers and were examined 8 weeks after planting. Stem height and were measured at 4-week intervals. In terms of fertilization treatment for 1-0 pine seedlings, the treatment group with gradually-increasing fertilizer concentration ($500{\rightarrow}1000{\rightarrow}1000{\rightarrow}1000mg{\cdot}L^{-1}$) had the biggest increase in stem height and diameter at the root. The survey results indicated that the increased concentration treatment group and the gradually-increasing concentration treatment group had more growth compared with that in the fixed concentration treatment group. The gradually-increasing concentration treatment group ($500{\rightarrow}1000{\rightarrow}1000{\rightarrow}1000mg{\cdot}L^{-1}$) had the highest total dry matter production. Nine weeks after fertilization, the tips of the pine leaves turned yellow in the fixed concentration treatment group ($3000mg{\cdot}L^{-1}$). The same phenomenon was observed in the treatment group in which the concentration was increased to $2000mg{\cdot}L^{-1}$, and in the gradually-increasing concentration treatment group, when the concentration was raised up to $2000mg{\cdot}L^{-1}$. We concluded that the optimal fertilization conditions for producing healthy pine 1-0 seedlings involve fertilizing once a week with Multifeed 19 at $500mg{\cdot}L^{-1}$ during the seedling period, Multifeed 19 at $1000mg{\cdot}L^{-1}$ during the rapid growth period, and Multifeed 32 at $1000mg{\cdot}L^{-1}$ during the maturation period.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Comparison of the Forage Quality and Productivity According to Varieties and Plant Parts of Imported Silage Corn (Zea mays, L) (도입 사일리지용 옥수수의 품종과 식물체 부위에 대한 사료가치와 생산성 비교)

  • Kim, Jong Geun;Li, Yan Feng;Wei, Sheng Nan;Jeong, Eun Chan;Kim, Hak Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.98-105
    • /
    • 2020
  • This experiment was conducted to a comparison of the productivity according to variety and forage quality by plant parts of imported silage corn (Zea mays, L) in Pyeongchang. The corns evaluated in this experiment were 8 varieties (P1184, P1151, P1194, P1543, P1345, P1429, P1443, and P2105) introduced from the United States, Pioneer Hybrid Co. The harvested corn was divided into 5 plant parts (leaf, stem, cob, husk, and grain), and the ratio of each part was calculated using dry weight and the feed value was analyzed. The emergence rate of corn was generally good except for the P1151 and P2105 varieties. The average tasseling date was July 24th and the silking date was July 27th, but the P2105 variety was late to July 28th and August 1st, and the remaining varieties were similar. P1345 was the highest (289 and 123 cm), and P1151 varieties were the lowest (267 and 101 cm) in the plant and ear height. Disease resistance was low in P1184, P1443 and P1429, and P1197 and P1345 were high. In the case of stover, the dry matter (DM) content was the lowest at 19.6% in the P1151 and the highest at 24.9% in the P1429. DM content of ear was the highest in the P2105 (55.5%), and P1184 (54.2%) and P1345 (54.3%) were also significantly higher (p<0.05). The DM yield of stover of P2105, P1429 and P1194 varieties was significantly higher (p<0.05), and ear yield of P2105, P1345 and P1443 was higher. The proportions of each part of plants (leaf, stem, cob, husk, and grain) divided by 5 was high, with 50-60% of the ear(grain+cob) ratio. The ratio of husk and cob was roughly similar, and the leaf and stem part showed a ratio of about 20%. The crude protein (CP) content was highest in leaf, followed by grain. The CP content of the stem was the lowest, and the husk was not significantly different among the varieties (p>0.05). The acid detergent fiber (ADF) content was similar to the rest parts except grain, but the leaf part tended to be lower, and other parts except the stem and leaf showed no significant difference between varieties (p>0.05). There was no significant difference in NDF (neutral detergent fiber) content in husk, but there was a difference between varieties in other parts (p<0.05). In addition, there was a special difference by plant parts for each variety, P2015 on the stem, P1197 on the leaf, P1151 on the cob, P1197 on the husk, and P1197 on the grains with high NDF content. IVDMD (in vitro dry matter digestibility) was not significantly different between stems and grains, but there was a difference between varieties in cobs and husks. According to the results, DM yield of P2105 variety was the best in the experiment, and the ratio of grain was excellent in P1543 and P1345. In addition, it was found that the feed value was higher in the leaves and grains, and the leaf and stem had higher feed values than husk or cob.