• Title/Summary/Keyword: dry adhesion

Search Result 141, Processing Time 0.027 seconds

A Study on Adhesion Friction Characteristics of Rubber for Tire Tread

  • Oh, Yumrak;Jeon, Seong-hee;Lee, Dong Youm;Kim, Hak-Joo;Kim, Jeong-Heon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.299-307
    • /
    • 2019
  • Rubber friction properties include adhesion friction characteristics of the interface, hysteresis friction characteristics originating from repeated rubber deformations, and cohesion friction characteristics due to wear and tear. Cohesion friction is generally sufficiently small (< 3%) that it can be ignored, whereas adhesion friction has a relatively large contribution of 15%, but has not been investigated thoroughly. Therefore, through an adhesion friction study, the adhesion mechanism was examined and the relationship between friction characteristics and adhesion friction on dry surfaces was derived. The wet grip characteristics of tread rubber are fully described by the hysteresis characteristics of tires, but friction characteristics on dry roads are difficult to determine without adhesion factors. The results presented herein demonstrate that the combination of hysteresis and adhesion properties in the tread rubber sufficiently explained the characteristics of the dry grip. Based on the results of this study, technologies will be developed to determine the key factors governing adhesion friction characteristics and improve dry tire braking performance.

Adhesion Properties of Polymer Composite Materials for Concrete Repair (콘크리트 보수용 폴리머 복합재료의 접착강도 특성)

  • 지경용;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.330-335
    • /
    • 1998
  • This research was conducted to evaluate the adhesion in tension of the polymer mortars for cement concrete repair. Various polymer types, binder ratios, and wet/dry conditions of the surface were considered in this study. Styrene-butadiene rubber (SBR) and ethylen vinyl acetate (EVA) used for polymer cement mortars. Epoxy resin (EP), and unsaturated polyester resin (UP) were used for polymer mertars. Adhesion in tension for the dry condition of the substrate surface was higher than that for the wet condition of the substrate surface under the same binder ratio. Therefore, in repairing concrete, the dry surface condition was effective on adhesion.

  • PDF

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

Fine Structural Analysis on the Dry Adhesion System of the Jumping Spider Plexippus setipes (Araneae: Salticidae)

  • Moon, Myung-Jin;Park, Jong-Gu
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • The cuticle of spider's exoskeleton is a hydrophobic and non-adhesive material, but the jumping spiders have the distinctive attachment apparatus for adhesion on smooth dry surface without sticky fluids. We have examined the whole tarsal appendages of the jumping spider, Plexippus setipes with using scanning electron microscope to reveal the fine structural characteristics of the dry adhesion system. All eight legs have the scopulae with a pair of claws on the tip of feet. Each scopula is composed of two groups of setae that are capable of dry adhesion on smooth surface, and the hook structure of the claw is advanced to move on the rough surface. The setae toward the bottom of the tarsal segment are densely covered by numerous setules on the underside which broadened from middle to distal portion. It has been revealed by this research that the contact area of the setule is always a triangular shape, and these cuticular surfaces are connected by the elongated stalks from the underlying setae. It is likely that the nano-scale structures including a triangular depression and a longitudinal groove on each setule could functionate when the spider detach its feet from the substrate.

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable (송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가)

  • Cho, Hui Jae;Kim, You Sub;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

EFFECT OF A REWETTING AGENT ON DENTIN ADHESION (재습윤제의 적용이 상아질 접착에 미치는 효과)

  • Cho, Young-Gon;Park, Yil-Yoon;Lee, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.11-22
    • /
    • 2003
  • This study compared the dentin adhesion to composite resin according to air-dry, blot dry, application of rewetting agent on air-dry or blot dry dentin surface by microleakag test and SEM observation. For microleakage test, class V cavity preparations with dentinal margins were prepared on both buccal and lingual surfaces of 40 extracted human molars. For SEM observation, occlusal dentin of 20 extracted human molars were exposed. After etched the dentin, prepared teeth were randomly divided into four groups; D group: air dry for 10-15 sec., B group: blot dry with moist cotton pellet, D-R group: air dry and rewet with Aqua-Prep F for 20 sec., B-R group: blot dry and rewet with Aqua-Prep F for 20 sec. Treated cavities and surfaces were filled or constructed using One-Step adhesives and Aelitefil composite resins. Specimens were stored in distilled water for 24 hours. For microleakage test, the specimens were thermocycled and soaked into 2% methylene blue. The specimens were sectioned longitudinally and evaluated for microleakage under steromicroscope. The data were statistically analysed by Kuskal-Wallis Test, Mann-Whitney and Wilcoxon signed ranked tests. For SEM observation, the specimens were bisectioned mesiodiatally. After decalcified and deproteinized, specimens were observed under SEM. The results of this study were as follows; 1. The microleakges on dentinal margin were the highest in D group compared with B group, D-R group, and B-R group(p<0.05). But there was no significant difference between B group, D-R group and B-R group. 2. D group showed gap and a few resin tags between dentin and composite resin. 3 B group, D-R group, and B-R groups showed close adaptation between dentin and composite resin. It showed that resin rags in B group were numerous and long, in D-R group were few and short, in B-R group were numerous and short or long. 4. Adhesive layer showed in D-R group ($10{\;}\mu\textrm{m}$) and B-R group ($3{\;}\mu\textrm{m}$) In conclusion, use of rewetting agent to dry dentin was efficient to dentin adhesion, also it did not provide reverse effect on blot dry dentin.

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing (촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발)

  • Kim, Da Wan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Investingation of Laser Shock Wave Cleaning with Different Particle Condition (오염 입자 상태에 따른 레이저 충격파 클리닝 특성 고찰)

  • 강영재;이종명;이상호;박진구;김태훈
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • In semiconductor processing, there are two types of particle contaminated onto the wafer, i.e. dry and wet state particles. In order to evaluate the cleaning performance of laser shock wave cleaning method, the removal of 1 m sized alumina particle at different particle conditions from silicon wafer has been carried out by laser-induced shock waves. It was found that the removal efficiency by laser shock cleaning was strongly dependent on the particle condition, i.e. the removal efficiency of dry alumina particle from silicon wafer was around 97% while the efficiencies of wet alumina particle in DI water and IPA are 35% and 55% respectively. From the analysis of adhesion forces between the particle and the silicon substrate, the adhesion force of the wet particle where capillary force is dominant is much larger than that of the dry particle where Van der Waals force is dominant. As a result, it is seen that the particle in wet condition is much more difficult to remove from silicon wafer than the particle in dry condition by using physical cleaning method such as laser shock cleaning.

  • PDF

Effects of Metal Coatings on Adhesive Characteristics of Gecko-like Micro Structures (도마뱀 인공섬모 구조물의 접착 특성에 금속코팅이 미치는 영향)

  • Kim, Gyu Hye;An, Tea Chang;Hwang, Hui Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1099-1103
    • /
    • 2015
  • Recently, there have been several studies on the inspiration and application of optimized natural structures. One study introduced a new adhesion method that was inspired by the feet of geckos because of their superior features such as high adhesion strength, ease-of-removal, and they are environmentally friendly. Various micro- or nano-structures were fabricated and tested for gecko-like dry adhesives, but gecko-like dry adhesives that were developed became easily worn from frequent use. In this study, we propose a metal-coating method to improve the durability of gecko-like dry adhesives. We evaluate the initial adhesion strength and durability by performing repeated adhesion tests on a glass plate. The initial adhesive strength of gold-coated micro-structures was 60% of that for non-coated ones. However, the adhesive strength of gold-coated micro-structures was kept as 58% of their initial adhesion strength, while that of non-coated ones was only 40%.