Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.6.378

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable  

Cho, Hui Jae (Department of Materials Science and Engineering, Chungnam National University)
Kim, You Sub (Department of Materials Science and Engineering, Chungnam National University)
Jung, Yong Chan (Creative Future Laboratory, KEPCO Research Institute)
Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.6, 2019 , pp. 378-384 More about this Journal
Abstract
Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.
Keywords
ACSR cable; ice adhesion strength; roughness; surface energy; regression analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. E. Schrader, Langmuir, 11, 3585 (1995).   DOI
2 S. M. Fikke, J. E. Kristjansson and B. E. K. Nygaard, Atmospheric Icing of Power Networks, p.2, M. Farzaneh, Springer Science & Business Media, Germany (2008).
3 J. H. Lee, H. Y. Jung, J. R. Koo, Y. J. Yoon and H. J. Jung, J. Electr. Eng. Technol., 12, 969 (2017).   DOI
4 J. L. Larforte, M. A. Allaire and J. Laflamme, Atmos. Res., 46, 143 (1998).   DOI
5 K. J. Zhu, D. J. Fu, J. C. Wang and N. Sun, Electrical Equipment, 6, 969 (2008).
6 W. K. Kim, S. J Cho and J. H. Shim, The Korean Inst. of Electr. Eng., 36, 673 (2005).
7 J. Ayres, W. H. Simendinger and C. M. Balik, J. Coat. Technol. Res., 4, 463 (2007).   DOI
8 Y. Tak, J. Korean Ind. Eng. Chem., 17, 335 (2006).
9 C. R. F. Azevedo and T. Cescon, Eng. Failure Anal., 9, 645 (2002).   DOI
10 J. K. Zhang, G. H. Chen and J. Q. Wang, Corros. Prot., 31, 581 (2010).
11 J. K. Zhang, G. H. Chen and J. Q. Wang, The Chin. J. Nonferrous Met., 21, 411 (2011).
12 L. L. Cao, A. K. Jones, V. K. Sikka, J. Z. Wu and D. Gao, Langmuir, 25, 12444 (2009).   DOI
13 T. Bharathidasan, S. V. Kumar, M. S. Bobji, R. P. S. Chakradhar and B. J. Basu, Appl. Surf. Sci., 314, 241 (2014).   DOI
14 J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang and Y. Song, Appl. Phys. Lett., 101, 111603 (2012).   DOI
15 S. A. Kulinich, S. Farhadi, K. Nose and X. W. Du, Langmuir, 27, 25 (2011).   DOI