• 제목/요약/키워드: drug release system

검색결과 287건 처리시간 0.026초

비글견을 이용한 케토롤락트로메타민 서방형 펠렛 제제의 위궤양 증상 비교와 약물속도론적 평가 (Pharmacokinetic Evaluation and Gastric Ulcer Symptoms comparison of Ketorolac Tromethamine Sustained-Release Pellets after Oral Administration in Beagle Dogs)

  • 윤양노;김수지;정석현;김효정;박은석;황성주;이영원;성하수;신병철;조선행
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권6호
    • /
    • pp.401-409
    • /
    • 2009
  • Ketrorolac tromethamine (KT), a nonsteroidal anti-inflammatory drug (NSAID) is required repeated administration due to its short blood half-life. To avoid dose-dependent side effects of KT, sustained-release pellets containing KT were prepared by coating with Eudragit$^{(R)}$ RS 100 and Eudragit$^{(R)}$ NE 30D. The in vitro and in vivo drug release behavior of KT from Eudragit$^{(R)}$ RS 100 and NE 30D coated pellet (SR-A), Eudragit$^{(R)}$ RS 100 coated pellet (SR-B) and conventional commercial immediate-release tablet (IR) was investigated. KT from SR-A and SR-B was slowly released over several hours, whereas IR showed rapid initial release in vitro. The pharmacokinetic study in vivo was performed by oral administration in beagle dogs. 5 mg IR was administered 3 times at intervals 5 hr. Five milligrams of IR was administered 3 times at intervals of 5 hr and 15 mg of SR-A and SR-B did once. After administering IR, KT concentration in blood showed high peak- trough fluctuation and stomach ulcer were discovered. On the other hand, SR-A and SR-B sustainedly released KT and reduced the occurrence of stomach ulcer. There sustained-release pellets will be effective system to minimize dosedependent of side effect and improve patient compliance.

의약품 제조공정에서의 전사적 품질혁신을 위한 공정분석기술 개발 (Development of Process Analytical Technology (PAT) for Total Quality Innovation on Pharmaceutical Processes)

  • 신상문;박경진;최용선;이상길;최광진;권병수
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권6호
    • /
    • pp.329-338
    • /
    • 2007
  • The quality assurance issue of drug products is more important than the general product because it is highly related to the human health and life. In this reason, the regulatory guide lines have continuously been intensified all around the world. In order to achieve effective quality assurance and real-time product release (RTPR) of drug products, process analytical technology (PAT), which can analyze and control a manufacturing process, has been proposed from the United States. With the PAT process, we can obtain significant process features of materials, quality characteristics and product capabilities from a raw material to the final product in the real-time procedure. PAT can also be utilized to process validation using information system that can analyze the risk of drug products through out an entire product life-cycle. In this paper, we first offered a new concept for the off-line process design methods to prepare the improved quality assurance restrictions and a real-time control method by establishing an information system. We also introduced an automatic inspection system by obtaining surrogate variables based on drug product formulations. Finally, we proposed an advanced PAT concept using validation and feedback principles through out the entire life-cycle of drug product manufacturing processes.

Solid Lipid Nanoparticles as Drug Delivery System for Water-Insoluble Drugs

  • Li, Rihua;Lim, Soo-Jeong;Choi, Han-Gon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.63-73
    • /
    • 2010
  • Solid lipid nanoparticles (SLNs) have emerged to combine the advantages of polymeric nanoparticles and lipid emulsions in early 1990s. SLNs can present several desirable properties derived from the solid state core. When formulating SLNs, there should be careful considerations about the physical state of the inner solid lipid core and its polymorphism and supercooling behavior. In this review, SLNs were compared to lipid emulsion and emulsion of supercooled melt to understand the unusual behaviors compared to lipid emulsions and to have insights into stability and release mechanism. SLNs have been regarded as biocompatible system because lipids are usually well-tolerable ingredients than polymers. Several studies showed good tolerability of SLNs in terms of cytotoxicity and hemolysis. Similar to various other nanoparticulate drug delivery systems, SLNs can also change biodistribution of the incorporated drugs in a way to enhance therapeutic effect. Most of all, large scale production of SLNs was extablished wihtout using organic solvents. Although there is no SLN product in the market till date, several advantagious properties of SLNs and the progress we have seen so far would make commercial product of SLNs possible before long and encourage research community to apply SLN-based formulations for water-insoluble drugs.

Enhanced Liver Targeting by Synthesis of $N_{\b{1}}-Stearyl-5-Fu$ and Incorporation into Solid lipid Nanoparticles

  • Yu, Bo-Tao;Xun-Sun;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1096-1101
    • /
    • 2003
  • To enhance the liver targeting and reduce the side effects of 5-fluorouracil (5-Fu), it was acylated by stearyl chloride to obtain .$\b{N}_{\b{1}}$stearyl-5-Fu (5-FuS). The chemical structure of the prodrug was confirmed by Nuclear Magnetic Resonance and Infrared Spectrometry. 5-FuS was incorporated into solid lipid nanoparticles (SLN), which were prepared by the physical agglomeration method. The mean diameter of 5-FuS-SLN was 240.19 nm and the drug loading was 20.53%. The release characteristics in vitro of 5-FuS-SLN were fitted to the first-order pharmacokinetic model. Compared with 5-Fu injection, a study on the distribution of 5-FuS-SLN in mice showed that 5-FuS-SLN could double 5-Fu concentration in mice livers. The main pharmacokinetic parameters of 5-FuS-SLN in rabbits is shown as follows: $V_d$=0.04336L/kg, $T_{1/2} \beta$=1.2834h, CL=0.1632 L/h. In conclusion, 5-FuS-SLN has significant liver targeting properties. The employment of a prodrug to enhance drug liposoluble properties and the preparation method presented in this paper, seem to be an alternative strategy to the traditional colloidal delivery system.

FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress

  • Yi, Caixia;Yu, Zhihai;Sun, Xin;Zheng, Xi;Yang, Shuangya;Liu, Hengchuan;Song, Yi;Huang, Xiao
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.87-96
    • /
    • 2022
  • Drug self-delivery systems can easily realize combination drug therapy and avoid carrier-induced toxicity and immunogenicity because they do not need non-therapeutic carrier materials. So, designing appropriate drug self-delivery systems for specific diseases can settle most of the problems existing in traditional drug delivery systems. Retinal pigment epithelium is very important for the homeostasis of retina. However, it is vulnerable to oxidative damage and difficult to repair. Worse still, the antioxidants can hardly reach the retina by non-invasive administration routes due to the ocular barriers. Herein, the targeted group (folic acid) and antioxidant (melatonin) have been grafted on the surface of ZnO quantum dots to fabricate a new kind of drug self-delivery systems as a protectant via eyedrops. In this study, the negative nanoparticles with size ranging in 4~6 nm were successfully synthesized. They could easily and precisely deliver drugs to retinal pigment epithelium via eyedrops. And they realized acid degradation to controlled release of melatonin and zinc in retinal pigment epithelium cells. Consequently, the structure of retinal pigment epithelium cells were stabilized according to the expression of ZO-1 and β-catenin. Moreover, the antioxidant capacity of retinal pigment epithelium were enhanced both in health mice and photic injury mice. Therefore, such new drug self-delivery systems have great potential both in prevention and treatment of oxidative damage induced retinal diseases.

Preparation of Solid Dispersion of Everolimus in Gelucire 50/13 using Melt Granulation Technique for Enhanced Drug Release

  • Jang, Sun Woo;Choi, Young Wook;Kang, Myung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1939-1943
    • /
    • 2014
  • Solid dispersion (SD) system of everolimus (EVR) with Gelucire 50/13 (Stearoyl polyoxyl-32 glycerides) was prepared using melt granulation technique with the aim of improving the physicochemical properties and dissolution rate. The solid state characterization using scanning electron microscopy and X-ray powder diffraction, indicated that the drug was homogeneously distributed in the surfactant carrier in a stable amorphous form. The dissolution rate of EVR from the optimized SD composed of the drug, Gelucire 50/13 and microcrystalline cellulose in a weight ratio of 1:5:10, was markedly rapid and higher than that from the drug powder and the market product (Afinitor$^{(R)}$, Novartis Pharmaceuticals) in all dissolution mediums tested from pH 3.0 to pH 6.8. The results of this study suggest that formulation of SD with Gelucire 50/13 using melt granulation procedure may be a simple and promising approach for improving the dissolution rate and oral absorption of the anti-cancer agent without the need for using an organic solvent.

적혈구를 이용한 Daunorubicin의 배송시스템 (Delivery System of Daunorubicin by Red Blood Cells)

  • 함성호;송경;고건일;김재백;손동환
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권3호
    • /
    • pp.131-137
    • /
    • 1994
  • Drug delivery system by the use of red blood cells was established to sustain the release of drugs in the circulatory system by the intravenous injection. The entrapment method by the preswelling technique was re-examined and evaluated for searching the new entrapping conditions without hemolysis. The addition of 4 volume of $0.6{\times}\;hank's$ balanced salt solution (HBSS) into 1 volume of 50% red blood cells suspension did not induce the hemolysis and change the hematocrit level in this experimental condition (within 15 min). Most of daunorubicin could be entrapped into red blood cells within 15 min. While the intracellular adenosine triphosphate (ATP) level followed by the entrapment was reduced to 86% of normal ATP level, the membrane fluidity and the shape factor of red blood cells were not altered. The release rate of daunorubicin from red blood cells was affected by the hemolysis under this condition. To maintain the intracellular ATP in red blood cells, the new reaction buffer was made With the addition of ATP and sodium pyruvate during the entrapment procedure because the hemolysis during the release test would reflect the loss of intracellular ATP that might result in the decrease of the viability in vivo. The addition of ATP raised the intracellular ATP level, which protect the hemolysis during the release test.

  • PDF

Poly(N-isopropylacrylamide-co-acrylamide)로 변형된 온도민감성 리포좀 (Temperature-sensitive Liposomes Modified with Poly(N-isopropylacrylamide-co-acrylamide))

  • 한희동;김승수;최호석;신병철
    • 대한화학회지
    • /
    • 제47권3호
    • /
    • pp.257-264
    • /
    • 2003
  • 본 연구에서는 외부온열 온도$(~40^{\circ}C)$에서 항암약물(doxorubicin)이 방출되는 온도민감성 리포좀에 대하여 연구하였다. 온도민감성 리포좀은 외부온열온도에서 하한임계용액온도의 성질을 나타내는 N-isopropylacrylamide (NIP-AAm)와 Acrylamide(AAm)의 합성고분자에 의하여 변형되었다. 변형된 리포좀으로부터 약물(doxorubicin)의 방출은 온도와 시간의 변화에 따라서 형광강도를 측정하여 결정하였다. Poly(NIPAAm-co-AAm) copolymer에 의하여 변형된 리포좀으로부터 약물(doxorubicin)의 방출은 Poly(NIPAAm-co-AAm) copolymer가 온열온도 범위$(~40{\pm}2^{\circ}C)$에서 적절한 전이를 나타내기 때문에 증가하였다. 또한, 리포좀으로부터 약물의 방출은 5분 이내에 완료되었고, 변형된 리포좀의 크기는 120~170 nm 이었다. 본 연구에서는 온도에 의하여 제어 할 수 있는 온도민감성 리포좀을 제조하였다. 이것은 온도 제어에 따른 종양 표적화에 대한 약물전달시스템에서 활용 될 수 있을 것이다.

Wound Healing Potential of Antibacterial Microneedles Loaded with Green Tea

  • Park, So Young;Lee, Hyun Uk;Kim, Gun Hwa;Park, Edmond Changkyun;Han, Seung Hyun;Lee, Jeong Gyu;Kim, Dong Lak;Lee, Jouhahn
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.411.1-411.1
    • /
    • 2014
  • This study evaluates the utility of an antibacterial microneedle composed of green tea extract (GT) and hyaluronic acid (HA), for the efficient delivery of GT. These microneedles have the potential to be a patient-friendly method for the conventional sustained release of drugs. In this study, a fabrication method using a mold-based technique to produce GT/HA microneedles with a maximum area of ${\sim}60mm^2$ with antibacterial properties was used to manufacture transdermal drug delivery systems. Fourier transform infrared (FTIR) spectrometry was carried out to observe the potential modifications in the microneedles, when incorporated with GT. The degradation rate of GT in GT/HA microneedles was controlled simply by adjusting the HA composition. The effects of different ratios of GT in the HA microneedles were determined by measuring the release properties. In HA microneedles loaded with 70% GT (GT70), a continuous higher release rate were sustained for 72 h. The in vitro cytotoxicity assays demonstrated that GT/HA microneedles are not generally cytotoxic to chinese hamster ovary cells (CHO-K1), human embryonic kidney cells (293T), and mouse muscle cells (C2C12), which were treated for 12 and 24 h. Antimicrobial activity of the GT/HA microneedles was demonstrated by ~95% growth reduction of gram negative [Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Salmonella typhimurium (S. typhimurium)] and gram positive bacteria [Staphylococcus aureus (S. Aureus) and Bacillus subtilis (B. subtilis)], with GT70. Furthermore, GT/HA microneedles reduced bacterial growth in the infected skin wound sites and improved skin wound healing process in rat model.

  • PDF

생분해성 고분자의 전기분사를 이용한 약물방출 스텐트용 금속표면 코팅 및 ALA방출 거동 (Metal Surface Coating Using Electrospray of Biodegradable Polymers and $\alpha$-Lipoic Acid Release Behavior for Drug-Eluting Stents)

  • 김동민;이봉수;박철호;박귀덕;손태일;정명호;한동근
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.178-183
    • /
    • 2010
  • 의료용 금속스텐트는 관상동맥계 심장질환을 앓고 있는 환자에 시술되어 상대적으로 생존율을 높여 준다. 그러나, 재협착 및 후기 혈전증으로 인하여 새로운 스텐트의 개발이 시급하게 되었다. 이러한 문제점을 해결하기 위해서 신생내막 과대증식을 막을 수 있는 것으로 알려진 alpha lipoic acid(ALA)를 생분해성 고분자인 poly(lactide-coglycolide)(PLGA), poly(L-lactide)(PLLA) 및 poly($\varepsilon$-caprolactone)(PCL)과 혼합하여 전기분사 방식으로 스테인레스 스틸 표면 위에 코팅하였다. 코팅된 고분자로부터 약물방출 거동은 고분자의 종류와 농도, 용출속도 및 용매의 종류에 따라서 조사하였다. 약물방출 속도는 유리전이온도($T_g$)가 낮은 PCL에서 가장 빨랐으며 PLGA, PLLA 순서를 보였다. 고분자 표면의 거친정도는 용출속도가 증가함에 따라서 증가하였고, 용매의 비등점의 차이에 의해서 약물방출속도가 변화됨을 알 수 있었다. 이러한 약물방출 거동을 조절함으로써 ALA가 담지된 생분해성 고분자로 코팅된 약물방출 스텐트를 실제 임상적용이 가능할 것으로 기대된다.