• Title/Summary/Keyword: drought-tolerant transgenic rice

Search Result 7, Processing Time 0.018 seconds

Screening methods for drought and salinity tolerance with transgenic rice seedlings

  • Song, Jae-Young;Song, Seon-Kyeong;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.165-165
    • /
    • 2017
  • Abiotic stress is one of the major serious limiting factors in rice (Oryza sativa) and caused rice production losses. It is important to precisely screen valuable genetic resources for improving stress tolerance and understanding tolerance mechanism to abiotic stresses. Because there are differences of experiment designs for screening of tolerant plant in several studies related to abiotic stress, this study has performed to provide the rapid and efficiency screening method for selection of tolerance rice to drought and salinity stresses. Two week-old rice seedlings that reached about three leaf stage were treated with drought and salinity stresses and examined tolerant levels with tolerant and susceptible control varieties, and transgenic plants. To determine the optimum concentration for the selection of drought and salinity condition, tolerant, susceptible and wild-type plants were grown under three soil moisture contents (5, 10 and 20% water contents) and three NaCl concentrations (100, 200 and 250 mM) for 10 days at seedling stage. 200 mM NaCl concentration and 5% moisture content soil were determined as the optimum conditions, respectively. The described methodologies in this study are simple and efficiency and might help the selection of drought and salinity tolerance plants at the 3,4-leaf-seedling stage.

  • PDF

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Acute toxicity evaluation of drought-tolerant transgenic rice Agb0103 to Daphnia magna

  • Oh, Sung-Dug;Lee, Bum Kyu;Park, Soo-Yun;Yun, Doh-Won;Sohn, Soo-In;Chang, Ancheol;Suh, Sang Jae
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.205-214
    • /
    • 2016
  • A drought-tolerant transgenic rice (Agb0103) was developed using a pepper methionine sulfoxide reductase (CaMsrB2) under the control of rice Rab21 promoter with a selection marker, the phosphinothricin acetyltransferase (PAT) gene. Commercialization of genetically modified (GM) crops will require the evaluation of risks associated with the release of GM crops. With the potential problems associated to GM crops safety testing, the investigation of their effects on non-target organisms is necessary for environmental risk research. This study was carried out to assess acute toxicity of a GM crop using the water flea (Daphnia magna) for non-target organism risk evaluation. The effect of acute toxicity on Daphnia magna of Agb0103 rice and a non-GM rice, Ilmibyeo, were investigated at different concentrations (0, 625, 1,250, 2,500, 5,000, and 10,000 mg/L). The Agb0103 rice used for the test was confirmed to express the CaMsrB2/PAT gene by the PCR and ELISA. Daphnia magna feeding tests showed no significant differences in cumulative immobility or abnormal response with either Agb0103 rice or non-GM rice. The 48hr-EC50 values showed no difference between Agb0103 rice (2243 mg/L) and non-GM rice (2694 mg/L). These results suggest that there is no significant difference in toxicity to Daphnia magna between Agb0103 rice and its non-GM counterpart.

Nutritional Composition of Drought-Tolerant Transgenic Rice (형질전환 가뭄저항성 벼 현미의 주요 영양성분 분석)

  • Lee, Young-Tack;Lee, Hyang-Mi;Ahn, Byung-Ohg;Cho, Hyun-Suk;Suh, Seok-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.5
    • /
    • pp.730-735
    • /
    • 2013
  • This study compared the nutritional components (proximate components, fatty acids, amino acids, minerals and vitamins) between genetically modified (GM) drought-tolerant rice and a parental rice cultivar (Ilmibyeo) as a non-GM control. Both GM and non-GM rices were grown and harvested in two different locations, Gunwi and Suweon in Korea. Proximate components (moisture, starch, protein, lipid, and ash contents) were similar between the drought-tolerant GM rice and the conventional non-GM rice. There were no significant differences between the GM and non-GM rice in most of their nutrient compositions, despite minor locational differences of some amino acids and minerals. These results indicate that transgenic rice with a genetically improved resistance to drought is equivalent to the parental rice cultivar without major changes in its chemical contents.

Over-expression of BvMTSH, a fusion gene for maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase, enhances drought tolerance in transgenic rice

  • Joo, Joungsu;Choi, Hae Jong;Lee, Youn Hab;Lee, Sarah;Lee, Choong Hwan;Kim, Chung Ho;Cheong, Jong-Joo;Choi, Yang Do;Song, Sang Ik
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots.

Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Cho, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.

Development of a Kit for Diagnosing AtCYP78A7 Protein in Abiotic-tolerant Transgenic Rice Overexpressing AtCYP78A7 (AtCYP78A7 과발현 환경스트레스 내성 형질전환 벼의 단백질 진단 키트 개발)

  • Nam, Kyong-Hee;Park, Jung-Ho;Pack, In-Soon;Kim, Ho Bang;Kim, Chang-Gi
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.835-840
    • /
    • 2018
  • Quantitative determination of the protein expression levels is one of the most important parts in assessment of the safety of foods derived from genetically modified (GM) crops. Overexpression of AtCYP78A7, a gene encoding cytochrome P450 protein, has been reported to improve tolerance to abiotic stress, such as drought and salt stress, in transgenic rice (Oryza sativa L.). In the present study, an enzyme-linked immunosorbent assay (ELISA) kit for diagnosing AtCYP78A7 protein including AtCYP78A7-specific monoclonal antibody was developed. GST-AtCYP78A7 recombinant protein was induced and purified by affinity column. Four monoclonal antibodies (mAb 6A7, mAb 4C2, mAb 11H6, and mAb 7E8) against recombinant protein were also produced and biotinylated with avidin-HRP. After pairing test using GST-AtCYP78A7 protein and lysate of rice samples, mAb 4C2 and mAb 7E8 were selected as a capture antibody and a detecting antibody, respectively, for ELISA kit. Product test using rice samples indicated that percentages of detected protein in total protein were greater than 0.1% in AtCYP78A7-overexpressing transgenic rice (Line 10B-5 and 18A-4), whereas those in negative control non-transgenic rice (Ilpum and Hwayoung) were less than 0.1%. The ELISA kit developed in this study can be useful for the rapid detection and safety assessment of transgenic rice overexpressing AtCYP78A7.