• Title/Summary/Keyword: drought planning

Search Result 107, Processing Time 0.024 seconds

Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea) (식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가)

  • Nam, Won-Ho;Tadesse, Tsegaye;Wardlow, Brian D.;Jang, Min-Won;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.

Agricultural Drought Assessment and Diagnosis Based on Spatiotemporal Water Supply in Irrigated Area (필지단위 관개용수 공급에 따른 농업가뭄진단 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Kim, Ha-Young;Mun, Young-Sik;Bang, Na-Kyoung;Lee, Jueng-Chol;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Agricultural drought is a natural phenomenon that is not easy to observe and predict and is difficult to quantify. In South Korea, the amount of agricultural water used is large and the types of use are varied, so even if an agricultural drought occurs due to insufficient precipitation, the drought actually felt in the irrigated area is it can be temporally and spatially different. In order to interpret the general drought in the past, drought disasters were evaluated using single indicators such as drought damage area, precipitation shortage status, and drought index, and a comprehensive drought management system is needed through drought diagnosis survey. Therefore, we intend to conduct research on agricultural drought assessment and diagnosis using re-evaluation of agricultural facilities and irrigation water supply network due to changes in various conditions such as climate change, irrigation canal network, and evaluation of water supply capacity of agricultural facilities. In this study, agricultural drought diagnosis was conducted on two agricultural reservoirs located in Sangju, Gyeongsangbuk-do, with structural or non-structural evaluations to increase spatiotemporal water supply and efficiency in terms of water shortages. The results of the agricultural drought diagnosis evaluation can be used to identify irrigated areas and canal network vulnerable to drought and to prioritize drought response.

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method (계층화분석 및 엔트로피 가중치 산정 방법에 따른 농업가뭄재해 취약성 평가)

  • Mun, Young-Sik;Nam, Won-Ho;Yang, Mi-Hye;Shin, Ji-Hyeon;Jeon, Min-Gi;Kim, Taegon;Lee, Seung-Yong;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.

Assessment of the Meteorological Characteristics and Statistical Drought Frequency for the Extreme 2017 Spring Drought Event Across South Korea (2017년 극심한 봄 가뭄의 기상학적 특성 및 통계학적 가뭄빈도해석)

  • Bang, Na-Kyoung;Nam, Won-Ho;Hong, Eun-Mi;Michael, J. Hayes;Mark, D. Svoboda
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.37-48
    • /
    • 2018
  • The extreme 2017 spring drought affected a large portion of central and western South Korea, and was one of the most climatologically driest spring seasons over the 1961-2016 period of record. This drought was characterized by exceptionally low precipitation, with total precipitation from January to June being 50% lower than the mean normal precipitation (1981-2010) over most of western South Korea. In this study, for the quantitative drought impact analysis, the widely-used Standardized Precipitation Index (SPI) and the statistical drought frequency are compared with observed meteorological characteristics and anomalies. According to the drought frequency analysis of monthly cumulative precipitation during January and May in 2017, Gyeonggi-do, Chungcheong-do, and Jeollanam-do areas showed more than drought frequency over 100 years. Gyeongsangnam-do area showed more than drought frequency over 200 years based on annual precipitation in 2017. The South Korean government (Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC)) have been operating a government-level drought monitoring system since 2016. Results from this study can be used to improve the drought monitoring applications of future drought events, as well as drought planning and preparedness in South Korea.

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Evaluation of Economic Effects of Agricultural Drought Using CGE Model - Focus on Rice Productivity - (CGE 모형을 활용한 농업 가뭄의 직간접적 파급효과 계측 - 쌀 생산성을 중심으로 -)

  • Kim, Hyeon-Woong;Sung, Jae-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.93-104
    • /
    • 2022
  • Agriculture is one of the most vulnerable sector to droughts, and drought damage on the agriculture sector could have effects on other sector. Droughts have different characteristics compared to other extreme events, which means more sophisticated methods considering the characteristics of droughts are required when measuring their damage. The purpose of this study is to analyze the damage of droughts based on limited computational general equilibrium model. To be specific, we constructed a CGE model focusing on the agriculture sector in Korea. Also, to limit changes in land use and labor, we limited them, and assume droughts only have effects on productivity of value-added. Lastly, we simulate drought effects on rice production in Korea based on several climate scenarios and GCM to identify the economic effects of droughts. The results show that 1) the cumulated damage of droughts during 2021~2040 is higher than other periods (2040~2061, 2081~2100), 2) the correlation between the damage of droughts and SSP scenarios is insignificant. This result implies the necessity of the effective drought risk management to prevent future droughts effects, irrespective of mitigation policies. 3) Due to increases in rice price, GDP of rice sector is increased. However, GDP of the other sector and consumer welfare are decreased. This result show that indirect effects of droughts would be more important when measuring drought effects on agriculture sector.

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

  • Cho, Song-Mi;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • 2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

Analysis of drought propagation using hydrometeorological data: from meteorological drought to agricultural drought (수문기상 정보를 이용한 가뭄 전이 분석: 기상학적 가뭄에서 농업적 가뭄)

  • Yu, Myungsu;Cho, Younghyun;Kim, Tae-Woong;Chae, Hyo-Sok
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.195-205
    • /
    • 2018
  • Drought is a complex phenomenon caused by various factors which can be classified into natural and anthropogenic causes. In Korea, the natural drought typically occurs when the high pressure of the Pacific Ocean develops rapidly or becomes stronger than usual in summer, resulting in a short-lived monsoon season. Drought also can be classified into meteorological, agricultural, hydrological, and socioeconomic drought depending on the development process and consequences. Each type of droughts can influence the other drought types directly or indirectly. Drought propagation refers a phenomenon that changes from meteorological drought to agricultural or hydrological drought. In this study, the occurrence and patterns of drought propagation are evaluated. The relationship between meteorological and agricultural droughts was assessed using hydrometeorological data. We classified the types of drought into five categories to evaluate the occurrence and characteristics of drought propagation. As results, we found drought propagation did not occur or delayed until three months, depending on the type of drought. The further generalized relationship of drought propagation is expected to be used for predicting agricultural drought from the preceding meteorological drought.

County-Based Vulnerability Evaluation to Agricultural Drought Using Principal Component Analysis - The case of Gyeonggi-do - (주성분 분석법을 이용한 시군단위별 농업가뭄에 대한 취약성 분석에 관한 연구 - 경기도를 중심으로 -)

  • Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.37-48
    • /
    • 2006
  • The objectives of this study were to develop an evaluation method of regional vulnerability to agricultural drought and to classify the vulnerability patterns. In order to test the method, 24 city or county areas of Gyeonggi-do were chose. First, statistic data and digital maps referred for agricultural drought were defined, and the input data of 31 items were set up from 5 categories: land use factor, water resource factor, climate factor, topographic and soil factor, and agricultural production foundation factor. Second, for simplification of the factors, principal component analysis was carried out, and eventually 4 principal components which explain about 80.8% of total variance were extracted. Each of the principal components was explained into the vulnerability components of scale factor, geographical factor, weather factor and agricultural production foundation factor. Next, DVIP (Drought Vulnerability Index for Paddy), was calculated using factor scores from principal components. Last, by means of statistical cluster analysis on the DVIP, the study area was classified as 5 patterns from A to E. The cluster A corresponds to the area where the agricultural industry is insignificant and the agricultural foundation is little equipped, and the cluster B includes typical agricultural areas where the cultivation areas are large but irrigation facilities are still insufficient. As for the cluster C, the corresponding areas are vulnerable to the climate change, and the D cluster applies to the area with extensive forests and high elevation farmlands. The last cluster I indicates the areas where the farmlands are small but most of them are irrigated as much.