• Title/Summary/Keyword: drought frequency

Search Result 235, Processing Time 0.035 seconds

Regional Frequency Analysis of Drought Rainfall using L-Moments (L-모멘트법에 의한 가뭄우량의 지역빈도분석)

  • Lee, Soon-Hyuk;Yoon, Seong-Soo;Maeng, Sung-Jin;Ryoo, Kyong-Sik;Joo, Ho-Kil
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.451-454
    • /
    • 2003
  • This study was mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. Selecting the drought rainfall series by the consecutive durations of drought observed for the long period all over the regions in Korea, optimal regionalization of the drought rainfall was classified by the climatologically and geographically homogeneous regions. Using the L-moment ratio and Kolmogorov- Smimov test, resonable frequency distribution for the drought rainfall was selected by the regions and consecutive periods of drought. Design drought rainfalls by the regions and consecutive durations were derived and compared by at-site and regional drought frequency analysis using the method of L-moments.

  • PDF

Analysis on the Spatio-Temporal Distribution of Drought using Potential Drought Hazard Map (가뭄우심도를 활용한 가뭄의 시공간적 분포특성분석)

  • Lee, Joo Heon;Cho, Kyeong Joon;Kim, Chang Joo;Park, Min Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.983-995
    • /
    • 2012
  • In this study, it was intended to analyze the spatio-temporal distribution of historical drought events occurred in Korea by way of drought frequency analysis using SPI (Standardized Precipitation Index), and Drought spell was executed to estimate drought frequency as per drought severity and regions. Also, SDF (severity-duration-frequency) curves were prepared per each weather stations to estimate spatial distribution characteristics for the severe drought areas of Korea, and Potential Drought Hazard Map was prepared based on the derived SDF curves. Drought frequency analysis per drought stage revealed that severe drought as well as extreme drought frequency were prominently high at Geum River, Nakdong River, and Seomjin River basin as can be seen from SDF curves, and drought severity was found as severer per each drought return period in the data located at Geum River, Nakdong River, and Seomjin River basins as compared with that of Seoul weather station at Han River basin. In the Potential Drought Hazard Map, it showed that Geum River, Seomjin River, and Yeongsan River basins were drought vulnerable areas as compared to upper streams of Nakdong River basin and Han River basin, and showed similar result in drought frequency per drought stage. Drought was occurred frequently during spring seasons with tendency of frequent short drought spell as indicated in Potential Drought Hazard Map of different season.

Assessment of the Meteorological Characteristics and Statistical Drought Frequency for the Extreme 2017 Spring Drought Event Across South Korea (2017년 극심한 봄 가뭄의 기상학적 특성 및 통계학적 가뭄빈도해석)

  • Bang, Na-Kyoung;Nam, Won-Ho;Hong, Eun-Mi;Michael, J. Hayes;Mark, D. Svoboda
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.37-48
    • /
    • 2018
  • The extreme 2017 spring drought affected a large portion of central and western South Korea, and was one of the most climatologically driest spring seasons over the 1961-2016 period of record. This drought was characterized by exceptionally low precipitation, with total precipitation from January to June being 50% lower than the mean normal precipitation (1981-2010) over most of western South Korea. In this study, for the quantitative drought impact analysis, the widely-used Standardized Precipitation Index (SPI) and the statistical drought frequency are compared with observed meteorological characteristics and anomalies. According to the drought frequency analysis of monthly cumulative precipitation during January and May in 2017, Gyeonggi-do, Chungcheong-do, and Jeollanam-do areas showed more than drought frequency over 100 years. Gyeongsangnam-do area showed more than drought frequency over 200 years based on annual precipitation in 2017. The South Korean government (Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC)) have been operating a government-level drought monitoring system since 2016. Results from this study can be used to improve the drought monitoring applications of future drought events, as well as drought planning and preparedness in South Korea.

A development of trivariate drought frequency analysis approach using copula function (Copula 함수를 활용한 삼변량 가뭄빈도해석 기법 개발)

  • Kim, Jin-Young;So, Byung-Jin;Kim, Tae-Woong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.823-833
    • /
    • 2016
  • This study developed a trivariate Copula function based drought frequency analysis model to better evaluate the recent 2014~2015 drought event. The bivariate frequency analysis has been routinely used for the drought variables of interest (e.g. drought duration and severity). However, the recent drought patterns showed that the intensity can be regarded as an important factor which is being characterized by short duration and severe intensity. Thus, we used the trivariate Copula function approach to incorporate the trivariate drought characteristics into the drought frequency analysis. It was found that the return periods based on the trivariate frequency analysis are, in general, higher than the existing bivariate frequency analysis. In addition, this study concludes that the increase in drought frequency claimed by the Gumbel copula function has been overestimated compared to the Student t Copula function. In other words, the selection of copula functions is rather sensitive to the estimation of trivariate drought return periods at a given duration, magnitude and intensity.

Drought Evaluation by A Drought Frequency Formula (가뭄빈도공식을 이용한 가뭄의 평가)

  • Kang, In-Joo;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.89-99
    • /
    • 2002
  • Drought is a very difficult natural disaster to overcome because its beginning and end are not clear to define, and it is widely distributed in space and has long term persistence. The purpose of this study was to evaluate the drought at Mokpo using drought frequency formula suggested by Sharma(1997). The precipitation records for the period 1906-1999 at Mokpo meteorological station are used for drought analysis. The most severe drought year is found to be that of 1995, which is of the 30-year frequency, and 18 drought years are selected based on the 5-year drought frequency.

Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin (낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

Calcualtion and Comparison of Drought Indices on Major Weatehr Stations in Korea (우리 나라 주요 지점에 대한 가뭄지수의 산정과 비교)

  • 김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.43-52
    • /
    • 1999
  • In an effort to identify quantitatively historical drought conditions, and to evaluate their temporal and spatial variability , two commonly used drougth indices, the standardized precipitation index, SPI by Mckee and the Palmer drought severity index. PDSI were calculated from 54 meteorological stations, SPI was evaluated for different time scales, 3 to 48 months. As the compjtational spans for SPI increase from 3 to 48 months the frequency and intensity of drought decrease, but the duration of drought increase. When monthly and ten-day PDSIs were compared, the frequency and duratin of drought were almost equal and the intensity of drought differ slightly. The three month SPI has the advatage to detect the drought resulting from short-term shortage of rainfall, while PDSI had the advantage to detect the state of drought resulting from cumulated shortage of rainfall. The period-frequency spectrum analyses at Kangnung statino showed that the maximum value of relative frequency was 24.4% when the period was 5.2months, and the 6month SPI has most similar trends to PDSI.

  • PDF

Regional Drought Frequency Analysis of Monthly Precipitation with L-Moments Method in Nakdong River Basin (L-Moments법에 의한 낙동강유역 월강우량의 지역가뭄빈도해석)

  • 김성원
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.431-441
    • /
    • 1999
  • In this study, the regional frequency analysis is used to determine each subbasin drought frequency with reliable monthly precipitation and the L-Moments method which is almost unbiased and has very nearly a normal distribution is used for the parameter estimation of monthly precipitation time series in Nakdong river basin. As the result of this study, the duration of '93-'94 is most severe drought year than any other water year and the drought frequency is established as compared the regional frequency analysis result of cumulative precipitation of 12th duration months in each subbasin with that of 12th duration months in the major drought duration. The Linear regression equation is induced according to linear regression analysis of drought frequency between Nakdong total basin and each subbasin of the same drought duration. Therefore, as the foundation of this study, it can be applied proposed method and procedure of this study to the water budget analysis considering safety standards for the design of impounding facilities large-scale river basin and for this purpose, above all, it is considered that expansion of reliable preciptation data is needed in watershed rainfall station.

  • PDF

Tail dependence of Bivariate Copulas for Drought Severity and Duration

  • Lee, Tae-Sam;Modarres, Reza;Ouarda, Taha B.M.J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.571-575
    • /
    • 2010
  • Drought is a natural hazard with different properties that are usually dependent to each other. Therefore, a multivariate model is often used for drought frequency analysis. The Copula based bivariate drought severity and duration frequency analysis is applied in the current study in order to show the effect of tail behavior of drought severity and duration on the selection of a copula function for drought bivariate frequency analysis. Four copula functions, namely Clayton, Gumbel, Frank and Gaussian, were fitted to drought data of four stations in Iran and Canada in different climate regions. The drought data are calculated based on standardized precipitation index time series. The performance of different copula functions is evaluated by estimating drought bivariate return periods in two cases, [$D{\geq}d$ and $S{\geq}s$] and [$D{\geq}d$ or $S{\geq}s$]. The bivariate return period analysis indicates the behavior of the tail of the copula functions on the selection of the best bivariate model for drought analysis.

  • PDF

Study on Multiscale Analysis on Drought Characteristics

  • Uranchimeg, Sumiya;Kwon, Hyun Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.611-611
    • /
    • 2015
  • One of the hazard of nature is a drought. Its impact varies from region to region and it is difficult for people to understand and define due to differences in hydrometeorological and social economic aspects across much of the country. In the most general sense, drought originates from a deficiency of precipitation over an extended period of time, usually month, season or more, resulting in a water shortage for some activity, group, or environmental sector. Palmer Drought Severity Index (PDSI) is well known and has been used to study aridity changes in modern and past climates. The PDSI index is estimated over US using USHCN historical data.(e.g. precipitation, temperature, latitude and soil moisture). In this study, low frequency drought variability associated with climate variability such as El-Nino and ENSO is mainly investigated. With respect to the multi-scale analysis, wavelet transform analysis is applied to the PDSI index in order to extract the low frequency band corresponding to 2-8 years. Finally, low frequency patterns associated with drought by comparing global wavelet power, with significance test are explored.

  • PDF