• Title/Summary/Keyword: drought assessment

Search Result 305, Processing Time 0.028 seconds

Analysis of Streamflow Characteristics of Boryeong-dam Watershed using Global Optimization Technique by Infiltraion Methods of CAT (CAT 모형의 침투해석방법별 전역최적화기법을 이용한 보령댐 유역의 유출 특성 변화 분석)

  • Park, Sanghyun;Kim, Hyeonjun;Jang, Cheolhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.412-424
    • /
    • 2019
  • In this study, the changes of the streamflow characteristics of the watershed were analysed depending on the infiltration methods of CAT. The study area, Boryeong-dam watershed located in Chungcheongnam-do area, has been suffered from severe drought in recent years and stabilized regarding on the storage rate through efforts such as constructing a channel connecting the upstream of Boryeong-dam from the downstream of the Geum river. In this study, the effects of soil infiltration parameters on the watershed streamflow characteristics were analyzed by the infiltration methods of CAT such as Rainfall Excess, Green&Ampt and Horton. And the parameter calibrations were conducted by SCEUA-P, a global optimization technique module of the PEST, the package for parameter optimization and uncertainty analysis, to compare the yearly variations of soil parameters for infiltration methods of CAT. In addition, the streamflow characteristics were analyzed for three infiltration methods by applying three different scenarios, such as applying calibrated parameters for every years to simulate the model for each years, applying calibrated parameters for the entire period to simulate the model for entire period, and applying the average value of yearly calibrated parameters to simulate the model for entire period.

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction (장기 기상전망이 댐 저수지 유입량 전망에 미치는 영향 분석)

  • Kim, Seon-Ho;Nam, Woo-Sung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.451-461
    • /
    • 2019
  • The dam reservoir inflow prediction is utilized to ensure for water supply and prevent future droughts. In this study, we predicted the dam reservoir inflow and analyzed how seasonal weather forecasting affected the accuracy of the inflow for even multi-purpose dams. The hindcast and forecast of GloSea5 from KMA were used as input for rainfall-runoff models. TANK, ABCD, K-DRUM and PRMS models which have individual characteristics were applied to simulate inflow prediction. The dam reservoir inflow prediction was assessed for the periods of 1996~2009 and 2015~2016 for the hindcast and forecast respectively. The results of assessment showed that the inflow prediction was underestimated by comparing with the observed inflow. If rainfall-runoff models were calibrated appropriately, the characteristics of the models were not vital for accuracy of the inflow prediction. However the accuracy of seasonal weather forecasting, especially precipitation data is highly connected to the accuracy of the dam inflow prediction. It is recommended to consider underestimation of the inflow prediction when it is used for operations. Futhermore, for accuracy enhancement of the predicted dam inflow, it is more effective to focus on improving a seasonal weather forecasting rather than a rainfall-runoff model.

Assessment of the environmental flow and habitat of the river ecosystem through ecosystem function model (생태계 기능모의를 통한 하천의 환경유량 및 서식처 평가)

  • Na, Jong-Moon;Park, Seo-Yeon;Cho, Yean-Hwa;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.191-201
    • /
    • 2021
  • Rivers have been damaged due to rapid urbanization, and river management has been carried out focusing on flow and flood control functions. Recently, interest in river restoration, emphasizing the environmental aspects of rivers, is increasing, but the beginning of river restoration requires an appropriate evaluation of the environmental flow required for the ecosystem. This study analyzed the effects on the habitat of the river ecosystem by estimating the changes in flow regime and environmental flow following the construction of the Buhang dam in Gamcheon, the first tributary of the Nakdong River. To evaluate the environmental flow, the dominant species of Gamcheon, Zacco Platypus, and the protected species Squalidus gracilis majime, and riparian vegetation were selected, and the environmental flow was calculated using the HEC-EFM (Ecosystem Function Model). The evaluated environmental flow was linked with hydraulic analysis and GIS platform, and habitat area change and habitat connectivity analysis before and after dam construction were performed by spatial habitat analysis in the river. Based on the results of this study, it can be used as a river restoration project and a dam operation plan considering the river environment through the calculation of environmental flow and habitat connectivity analysis to improve the habitat of the river ecosystem.

Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires (산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석)

  • Youn, Youjeong;Kim, Seoyeon;Choi, Soyeon;Park, Ganghyun;Kang, Jonggu;Kim, Geunah;Kwon, Chunguen;Seo, Kyungwon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1847-1859
    • /
    • 2022
  • Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.

Remote Sensing and GIS for Earth & Environmental Disasters: The Current and Future in Monitoring, Assessment, and Management 2 (원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황 2)

  • Yang, Minjune;Kim, Jae-Jin;Ryu, Jong-Sik;Han, Kyung-soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.811-818
    • /
    • 2022
  • Recently, the number of natural and environmental disasters is rapidly increasing due to extreme weather caused by climate change, and the scale of economic losses and damage to human life is increasing accordingly. In addition, with urbanization and industrialization, the characteristics and scale of extreme weather appearance are becoming more complex and large in different ways from the past, and need for remote sensing and artificial intelligence technology for responding and managing global environmental disasters. This special issue investigates environmental disaster observation and management research using remote sensing and artificial intelligence technology, and introduces the results of disaster-related studies such as drought, flood, air pollution, and marine pollution, etc. in South Korea performed by the i-SEED (School of Integrated Science for Sustainable Earth and Environmental Disaster at Pukyong National University). In this special issue, we expect that the results can contribute to the development of monitoring and management technologies that may prevent environmental disasters and reduce damage in advance.

Assessment of the impact of climate variability on runoff change of middle-sized watersheds in Korea using Budyko hypothesis-based equation (Budyko 가설 기반 기후 탄력성을 고려한 기후변동이 우리나라 중권역 유출량 변화에 미치는 영향 평가)

  • Oh, Mi Ju;Hong, Dahee;Lim, Kyung Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.237-248
    • /
    • 2024
  • Watershed runoff that is an important component of the hydrological processes has been significantly altered by climate variability and human activities in many watersheds around the world. It is important to investigate the impacts of climate variability and human activities on watershed runoff change for water resource management. In this study, using watershed runoff data for 109 middle-sized watersheds in Korea, the impacts of climate variability and human activities on watershed runoff change were quantitatively evaluated. Using the Pittitt test, the analysis period was divided into two sub-periods, and the impacts of climate variability and human activities on the watershed runoff change were quantified using the Budyko hypothesis-based climate elasticity method. The overall results indicated that the relative contribution of climate variability and human activities to the watershed runoff change varied by middle-sized watersheds, and the dominant factors on the watershed runoff change were identified for each watershed among climate variability and human activities. The results of this study enable us to predict the watershed runoff change considering climate variability and watershed development plans, which provides useful information for establishing a water resource management plan to reduce the risk of hydrological disasters such as drought or flood.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Assessment of future climate and land use changes impact on hydrologic behavior in Anseong-cheon Gongdo urban-growing watershed (미래 기후변화와 토지이용변화가 안성천 공도 도시성장 유역의 수문에 미치는 영향 평가)

  • Kim, Da Rae;Lee, Yong Gwan;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to evaluate the future hydrologic behavior affected by the potential climate and land use changes in upstream of Anseong-cheon watershed ($366.5km^2$) using SWAT. The HadGEM3-RA RCP 4.5 and 8.5 scenarios were used for 2030s (2020-2039) and 2050s (2040-2059) periods as the future climate change scenario. It was shown that maximum changes of precipitation ranged from -5.7% in 2030s to +18.5% in 2050s for RCP 4.5 scenarios and the temperature increased up to $1.8^{\circ}C$ and $2.6^{\circ}C$ in 2030s RCP 4.5 and 2050s 8.5 scenarios respectively based on baseline (1976-2005) period. The future land uses were predicted using the CLUE-s model by establishing logistic regression equation. The 2050 urban area were predicted to increase of 58.6% (29.0 to $46.0km^2$). The SWAT was calibrated and verified using 14 years (2002-2015) of daily streamflow with 0.86 and 0.76 Nash-Sutcliffe model efficiency (NSE) for stream flow (Q) and low flow 1/Q respectively focusing on 2 drought years (2014-2015) calibration. For future climate change only, the stream discharge showed maximum decrease of 24.2% in 2030s RCP 4.5 and turned to maximum increase of 10.9% in 2050s RCP 4.5 scenario compared with the baseline period stream discharge of 601.0 mm by the precipitation variation and gradual temperature increase. While considering both future climate and land use change, the stream discharge showed maximum decrease of 14.9% in 2030s RCP 4.5 and maximum increase of 19.5% in 2050s RCP 4.5 scenario by the urban growth and the related land use changes. The results supported that the future land use factor might be considered especially for having high potential urban growth within a watershed in the future climate change assessment.

Fish Fauna and Ecological Characteristics of Dark Chub (Zacco temminckii) Population in the Mid-Upper Region of Gam Stream (감천 중 ${\cdot}$ 상류역의 어류상과 갈겨니 (Zacco temminckii) 개체군의 생태학적 특성)

  • Seo, Jin-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.196-206
    • /
    • 2005
  • The fish community in the mid-upper region of Gam Stream was examined seasonally from 2001 to 2003 in order to perform an environmental impact assessment prior to a construction of Gamcheon Multipurpose Dam. Additional investigation was conducted in August 2004 to confirm the fish fauna reported and to examine the ecological characteristics of Zacco temminckii population. The total number of fish caught from the study sites was 1,081 fish representing 5 families 14 species. There were 6 Korean endemic species including Coreoleuciscus splendidus, Squalidus gracilis majimae, Microphysogobio yaluensis, Liobagrus mediadiposalis, Coreoperca herzi and Odontobutis platycephala, but no endangered or vulnerable species were found. Length-weight relation, condition factor (K) and relative condition factor (Kn) of Zacco temminckii were compared by the study sites and stream. The equations based on length-weight relation in Buhang and Gam Streams were TW\;=\;0.000004TL^{3.2357}$ and TW\;=\;0.000002TL^{3.3566}$, respectively indicating the fish in Gam Stream became more rotund as length increases. The condition factor (K) and relative condition factor (Kn) against total length of Zacco temminckii at two streams indicated that the fish (>70 mm) in Cam Stream (mean K and Kn= 1.116, 1.21 respectively) had better nutritional condition than those in Buhang Stream (mean K and Ln = 1.046, 1.14 respectively). The results were corresponded with natural disturbances such as drought and intensive rainfall from 2001 to 2003 followed by human activities such as stream repair works. Therefore, it is considered to perform environmental impact assessment with not only confirmation of fish composition but also examination of ecological characteristics in population- level.