• Title/Summary/Keyword: drought

Search Result 2,134, Processing Time 0.028 seconds

Development on Classification Standard of Drought Severity (가뭄심도 분류기준의 개선방안 제시)

  • Kwon, Jinjoo;Ahn, Jaehyun;Kim, Taewoong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • As drought is phenomenon of nature with unavoidability and repeated characteristic, it is necessary to plan to respond to it in advance and construct drought management system to minimize its damage. This study suggested standard for classification of drought, which is appropriate for our nation to respond to drought by assessing drought severity in the regions for this study. For data collection, 61 locations were selected - the locations keep precipitation data over 30 years of observation. And data for monthly precipitation for 37 years from 1973 were used. Based on this, this study classified unified drought interval into four levels using drought situation phases which are used in government. For standard for classification of drought severity fit to our nation, status of main drought was referred and these are classified based on accumulated probability of drought - 98~100% Exceptional Drought, 94~98% Extreme Drought, 90~94% Severe Drought, 86~90% Moderate Drought. Drought index (SPI, PDSI) was made in descending order and quantitative value of drought index fit to standard of classification for drought severity was calculated. To compare classification results of drought severity of SPI and PDSI with actual drought, comparison by year and month unit were analyzed. As a result, in comparison by year and comparison by month unit of SPI, drought index of each location was mostly identical each other between actual records and analyzed value. But in comparison by month unit of PDSI for same period, actual records did not correspond to analyzed values. This means that further study about mutual supplement for these indexes is necessary.

Investigation of Drought Propagation and Damage Characteristics Using Meteorological and Hydrological Drought Indices (기상학적 및 수문학적 가뭄지수를 활용한 가뭄 전이 및 피해 특성 분석)

  • Kim, Ji Eun;Son, Ho-Jun;Kim, Taesik;Kim, Won-Beom;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.291-302
    • /
    • 2024
  • Sustained meteorological drought can lead to hydrological drought, known as drought propagation. The propagated droughts cause more damage to the region than the non-propagated droughts. Recent studies on drought propagation have focused on identifying the lag time using correlation analysis. There is a lack of studies comparing damage patterns between propagated and non-propagated droughts. In this study, the overlap and pooling propagation between meteorological and hydrological droughts were analyzed using drought indices in Chungcheong Province to identify drought propagation, and the propagation characteristics such as pooling, attenuation, lag and extension were analyzed. The results showed that although Chungju-si experienced a meteorological drought in 2010, no damage was caused by the drought. However, a meteorological drought in 2017 and 2018 propagated into a hydrological drought of longer duration but less severity, resulting in drought-affected damage. Similarly, Cheongyang-gun experienced a meteorological drought in 2017, but no damage was reported from the drought. However, in the neighboring county of Buyeo-gun, a meteorological drought with a similar magnitude propagated to a hydrological drought during the same period, resulting in drought-affected damage. The overall results indicated that the damage from propagated drought events was more severe than the non-propagated drought events, and these results can be used as basic data for establishing drought response policies suitable for the region.

A Study on the Index of Drought and Drought Management Considering Reservoir Storage (저수용량을 고려한 가뭄지수 산정과 가뭄관리에 관한 연구)

  • Cho, Hong Je;Park, Han Ki;Kim, Su Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 1998
  • The goal of the present research was to develop a mean to determine indices of drought warning and emergency necessary to manage drought and establish water supply contingency plan for the municipal and industrial water supply system in urban areas. To do this, we worked on the Sayun catchment which is the main water source of Ulsan and used measured hydrologic data (storage, inflow, supply, outflow) from 1980 to 1996. The indices of drought calculated by the method of Phillips drought index based only on monthly precipitation do not pertinently represent drought phenomena in case water supply is from dam or reservoir in an urban area. Therefor, we developed the drought index technique including inflow, storage, outflow and supply which are the chief factors of drought management. The result showed that the method of Phillips drought index considering the capacity of water supply was excellent when applied to practical drought phenomena.

  • PDF

Correlation Analysis of Vegetation Index and Drought Index (식생지수와 가뭄지수의 상관성 분석)

  • Kim, Kyung Tak;Park, Jung Sool
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2006
  • Drought is an natural phenomenon which effects greatly on our society. It has various time scale and it is difficult to define the beginning and the end. So we can't aware it quickly and the damage of drought become severe. To cope with these problems, it needs to construct drought monitoring system. And it is required that the definition of drought which is objective and can be applied widely and proper drought index for drought monitoring. Meteorology and hydrology have developed drought index for drought monitoring. There are many attempt to interpret the drought using NDVI(Normalized Difference Vegetation Index) or LST(Land Surface Temperature) in remote sensing. In this study, drought index and precipitation is used to find drought severity of last ten years in South Korea. NDVI and VCI is applied to perceive the state of drought. Finally, the possibility of drought monitoring and evaluating drought depth is estimated by analyzing the correlation between vegetation Index and drought index.

  • PDF

Comparison of Meteorological Drought and Hydrological Drought Index (기상학적 가뭄지수와 수문학적 가뭄지수의 비교)

  • Lee, Bo-Ram;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • In this study, meteorological drought indices were examined to simulate hydrological drought. SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) was applied to represent meteorological drought. Further, in order to evaluate the hydrological drought, monthly total inflow and SDI (Streamflow Drought Index) was computed. Finally, the correlation between meteorological and hydrological drought indices were analyzed. As a results, in monthly correlation comparison, the correlation between meteorological drought index and monthly total inflow was highest with 0.67 in duration of 270-day. In addition, a meteorological drought index were correlated 0.72 to 0.87 with SDI. In compared to the annual extremes, the relationship between meteorological drought index and minimum monthly inflow was hardly confirmed. But SDI and SPEI showed a slightly higher correlation. There are limitation that analyze extreme hydrological drought using meteorological drought index. For the evaluation of the hydrological drought, drought index which included inflow directly is required.

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • Kim, Gwang-Seob;Quan, Ngo Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

Assessment of the Historical Variability of Meteorological Drought in Bangladesh (방글라데시의 기상학적 가뭄 변동성 평가)

  • Kamruzzaman, Mohammad;Hwang, Syewoon;Cho, Jaepil;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.77-88
    • /
    • 2019
  • Drought is the recurrent natural disasters which harshly affect agricultural production and society in various parts in Bangladesh. Information on the spatiotemporal variability of drought events plays a vital role to take necessary action towards drought mitigation and sustainable development. This study aims to analyze the spatial and temporal variation of meteorological drought in Bangladesh during 1981-2015 using Effective Drought Index (EDI). Monthly precipitation data for 36 years (1980-2015) were obtained from 27 meteorological stations. Drought frequency (DF) and areal extent of drought were considered to investigate the spatiotemporal structure of drought. The DF analysis showed that the northern, southwestern and central regions of the country are comparatively vulnerable to meteorological drought. The frequency of drought in all categories has considerably increased during the recent five years from 2011 to 2015. Furthermore, the most significant increasing trend of the drought-affected area was found over the central region especially for pre-monsoon (March-May) season during this period while the decreasing trend of the affected area was found within the eastern region during the study period. To prevent and mitigate the damages of drought disasters in Bangladesh, agricultural and government managers should pay more attention to those regional drought events that occur in pre-monsoon season. The outcome of the present study can be used as explanatory data in building the strategies to drought monitoring and mitigation activities in Bangladesh.

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

Agricultural Drought Assessment and Diagnosis Based on Spatiotemporal Water Supply in Irrigated Area (필지단위 관개용수 공급에 따른 농업가뭄진단 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Kim, Ha-Young;Mun, Young-Sik;Bang, Na-Kyoung;Lee, Jueng-Chol;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Agricultural drought is a natural phenomenon that is not easy to observe and predict and is difficult to quantify. In South Korea, the amount of agricultural water used is large and the types of use are varied, so even if an agricultural drought occurs due to insufficient precipitation, the drought actually felt in the irrigated area is it can be temporally and spatially different. In order to interpret the general drought in the past, drought disasters were evaluated using single indicators such as drought damage area, precipitation shortage status, and drought index, and a comprehensive drought management system is needed through drought diagnosis survey. Therefore, we intend to conduct research on agricultural drought assessment and diagnosis using re-evaluation of agricultural facilities and irrigation water supply network due to changes in various conditions such as climate change, irrigation canal network, and evaluation of water supply capacity of agricultural facilities. In this study, agricultural drought diagnosis was conducted on two agricultural reservoirs located in Sangju, Gyeongsangbuk-do, with structural or non-structural evaluations to increase spatiotemporal water supply and efficiency in terms of water shortages. The results of the agricultural drought diagnosis evaluation can be used to identify irrigated areas and canal network vulnerable to drought and to prioritize drought response.

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method (계층화분석 및 엔트로피 가중치 산정 방법에 따른 농업가뭄재해 취약성 평가)

  • Mun, Young-Sik;Nam, Won-Ho;Yang, Mi-Hye;Shin, Ji-Hyeon;Jeon, Min-Gi;Kim, Taegon;Lee, Seung-Yong;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.