DOI QR코드

DOI QR Code

Investigation of Drought Propagation and Damage Characteristics Using Meteorological and Hydrological Drought Indices

기상학적 및 수문학적 가뭄지수를 활용한 가뭄 전이 및 피해 특성 분석

  • Kim, Ji Eun (KICT) ;
  • Son, Ho-Jun (Hanyang University) ;
  • Kim, Taesik (Hanyang University) ;
  • Kim, Won-Beom (National Disaster Management Research Institute) ;
  • Kim, Tae-Woong (Hanyang University)
  • 김지은 (한국건설기술연구원 수자원하천연구본부) ;
  • 손호준 (한양대학교 대학원 스마트시티공학과) ;
  • 김태식 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김원범 (국립재난안전연구원 국가가뭄통합센터) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2023.11.16
  • Accepted : 2024.01.18
  • Published : 2024.06.01

Abstract

Sustained meteorological drought can lead to hydrological drought, known as drought propagation. The propagated droughts cause more damage to the region than the non-propagated droughts. Recent studies on drought propagation have focused on identifying the lag time using correlation analysis. There is a lack of studies comparing damage patterns between propagated and non-propagated droughts. In this study, the overlap and pooling propagation between meteorological and hydrological droughts were analyzed using drought indices in Chungcheong Province to identify drought propagation, and the propagation characteristics such as pooling, attenuation, lag and extension were analyzed. The results showed that although Chungju-si experienced a meteorological drought in 2010, no damage was caused by the drought. However, a meteorological drought in 2017 and 2018 propagated into a hydrological drought of longer duration but less severity, resulting in drought-affected damage. Similarly, Cheongyang-gun experienced a meteorological drought in 2017, but no damage was reported from the drought. However, in the neighboring county of Buyeo-gun, a meteorological drought with a similar magnitude propagated to a hydrological drought during the same period, resulting in drought-affected damage. The overall results indicated that the damage from propagated drought events was more severe than the non-propagated drought events, and these results can be used as basic data for establishing drought response policies suitable for the region.

가뭄 전이는 기상학적 가뭄이 오랜기간 지속되어 수문학적 가뭄으로 발달하는 현상으로 가뭄 전이 사상은 비전이 가뭄사상보다 지역에 큰 피해를 야기한다. 기존에 수행된 가뭄 전이 연구들은 주로 상관분석을 통해 지체시간을 파악하고 있으며, 가뭄 전이 및 비전이 사상 간의 피해 양상을 비교하는 연구는 부족한 실정이다. 본 연구에서는 충청권역 시군구 단위의 가뭄지수를 활용하여 기상학적 및 수문학적 가뭄간의 중복전이 및 풀링전이를 고려하여 가뭄 전이 여부를 판단하고, 가뭄의 전이 특성(풀링, 감쇠, 지체, 연장)을 분석하였다. 분석 결과 충청북도 충주시에서 2010년 기상학적 가뭄(비전이 사상)이 발생하였으나, 가뭄 피해는 발생하지 않았다. 하지만, 2017-2018년에 발생한 가뭄은 기상학적 가뭄이 수문학적 가뭄으로 전이되면서 심도는 약하지만 지속기간이 길어짐에 따라 가뭄으로 인한 피해가 발생하였다. 이와 비슷하게 2017년 청양군에서는 기상학적 가뭄(비전이 사상)이 발생하였으나, 가뭄 피해는 발생하지 않았다. 하지만, 바로 인접지역인 부여군에서는 동일한 기간에 비슷한 크기의 기상학적 가뭄이 수문학적 가뭄으로 전이되어 가뭄으로 인한 피해가 발생하였다. 본 연구를 통해 비전이 사상보다 전이 사상에서 피해가 심각한 것을 확인하였으며, 이러한 결과는 지역에 적합한 가뭄 대응 정책을 수립하는데 기초자료로 활용할 수 있다.

Keywords

Acknowledgement

This research was supported by a grant(2022-MOIS63-001 (RS-2022-ND641011)) of Cooperative Research Method and Safety Management Technology in National Disaster funded by Ministry of Interior and Safety(MOIS, Korea).

References

  1. Barker, L. J., Hannaford, J., Chiverton, A. and Svensson, C. (2016). "From meteorological to hydrological drought using standardised indicators." Hydrology and Earth System Sciences, EGU, Vol. 20, No. 6, pp. 2483-2505, https://doi.org/10.5194/hess-20-2483-2016. 
  2. Haslinger, K., Koffler, D., Schoner, W. and Laaha, G. (2014). "Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction." Water Resources Research, AGU, Vol. 50, No. 3, pp. 2468-2487, https://doi.org/10.1002/2013WR015051. 
  3. Ho, S., Tian, L., Disse, M. and Tuo, Y. (2021). "A new approach to quantify propagation time from meteorological to hydrological drought." Journal of Hydrology, Elsevier, Vol. 603, 127056, https://doi.org/10.1016/j.jhydrol.2021.127056. 
  4. Huang, S., Zhang, X., Chen, N., Li, B., Ma, H., Xu, L., Li, R. and Niyogi, D. (2021). "Drought propagation modification after the construction of the Three Gorges Dam in the Yangtze River Basin." Journal of Hydrology, Elsevier, Vol. 603, https://doi.org/10.1016/j.jhydrol.2021.127138. 
  5. Kang, S. Y., Lee, J. K., Lee, Y. S. and Lee, H. S. (2021). "Analysis of drought propagation on Boryung dam watershed using diverse drought indices." Proceeding of 2021 KSCE 2021 CONVENTION, KSCE, Gwangju, pp. 106-107 (in Korean).
  6. Kang, S. U., Park, J. H., Kang, H. W. and Kim, H. S. (2019). "Development of weekly rainfall-runoff model for drought preparedness and response." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 19, No. 4, pp. 45-52, https://doi.org/10.9798/KOSHAM.2019.19.4.45 (in Korean). 
  7. Kim, J., Lee, B., Yoo, J., Kwon, H. H. and Kim, T. W. (2021). "Low-flow frequency analysis and drought outlook in water districts under climate change scenarios: A case study of Gimcheon-si, Korea." Journal of Wetlands Research, Korean Wetland Society, Vol. 23, No. 1, pp. 14-26, https://doi.org/10.17663/JWR.2021.23.1.14 (in Korean). 
  8. Kim, J. E., Park, J. Y., Lee, J. H. and Kim, T. W. (2019). "Socioeconomic vulnerability assessment of drought using principal component analysis and entropy method." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 6, pp. 441-449, https://doi.org/10.3741/JKWRA.2019.52.6.441 (in Korean). 
  9. Mao, R., Shi, A., Song, J., Xu, W., Tang, B. and Li, B. (2023). "Response of the runoff process to meteorological drought: Baseflow index as an important indicator." Journal of Environmental Management, Elseiver, Vol. 345, 118843, https://doi.org/10.1016/j.jenvman.2023.118843. 
  10. McKee, T. B., Doesken, N. J. and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, California, pp. 179-184.
  11. Ministry of Land, Infrastructure and Transport(MOLIT) (2016). 2015 Drought record survey report, Ministry of Land, Infrastructure and Transport, Korea (in Korean).
  12. Nalbantis, I. and Tsakiris, G. (2009). "Assessment of hydrological drought revisited." Water Resources Management, EWRA, Vol. 23, No. 5, pp. 881-897, https://doi.org/10.1007/s11269-008-9305-1. 
  13. Sattar, M. N., Lee, J. Y., Shin, J. Y. and Kim, T. W. (2019). "Probabilistic characteristics of drought propagation from meteorological to hydrological drought in South Korea." Water Resources Management, EWRA, Vol. 33, pp. 2439-2452, https://doi.org/10.1007/s11269-019-02278-9. 
  14. Seo, J. Y. and Lee, S. I. (2023). "Probabilistic evaluation of drought propagation using satellite data and deep learning model: From precipitation to soil moisture and groundwater." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, Vol. 16, pp. 6048-6061, https://doi.org/10.1109/JSTARS.2023.3290685. 
  15. Shin, J. Y., Chen, S., Lee, J. H. and Kim, T. W. (2018). "Investigation of drought propagation in South Korea using drought index and conditional probability." Terrestrial, Atmospheric & Oceanic Sciences, Chinese Geoscience Union, Vol. 29, No. 2, pp. 231-241, https://doi.org/10.3319/TAO.2017.08.23.01. 
  16. Smakhtin, V. U. and Hughes, D. A. (2004). Review, automated estimation and analyses of drought indices in South Asia, Working Paper 83, International Water Management Institute, Colombo, Srilanka.
  17. Tallaksen, L. M., Madsen, H. and Clausen, B. (1997). "On the definition and modelling of streamflow drought duration and deficit volume." Hydrological Sciences Journal, IAHS, Vol. 42, No. 1, pp. 15-33, https://doi.org/10.1080/02626669709492003. 
  18. Tijdeman, E., Blauhut, V., Stoelzle, M., Menzel, L. and Stahl, K. (2022). "Different drought types and the spatial variability in their hazard, impact, and propagation characteristics." Natural Hazards and Earth System Sciences, EGU, Vol. 22, No. 6, pp. 2099-2116, https://doi.org/10.5194/nhess-22-2099-2022. 
  19. Van Loon, A. F. (2013). On the Propagation of Drought.: How Climate and Catchment Characteristics Influence Hydrological Drought Development and Recovery, Wageningen University, Wageningen, Netherlands.
  20. Van Loon, A. F., Van Huijgevoort, M. H. J. and Van Lanen, H. A. J. (2012). "Evaluation of drought propagation in an ensemble mean of large-scale hydrological models." Hydrology and Earth System Sciences, EGU, Vol. 16, No. 11, pp. 4057-4078, https://doi.org/10.5194/hess-16-4057-2012. 
  21. Vicente-Serrano, S. M. and Lopez-Moreno, J. I. (2005). "Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin." Hydrology and Earth System Sciences, EGU, Vol. 9, No. 5, pp. 523-533, https://doi.org/10.5194/hess-9-523-2005. 
  22. Yoo, J., So, B. J., Lee, J. H. and Kim, T. W. (2020). "Analysis of drought propagation from meteorological to hydrological drought considering spatio-temporal moving pattern of drought events." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 40, No. 2, pp. 135-143, https://doi.org/10.12652/Ksce.2020.40.2.0135 (in Korean). 
  23. Yu, M., Cho, Y., Kim, T. W. and Chae, H. S. (2018). "Analysis of drought propagation using hydro-meteorological data: from meteorological drought to agricultural drought." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 3, pp. 195-205, https://doi.org/10.3741/JKWRA.2018.51.3.195 (in Korean). 
  24. Yu, M., Liu, X. and Li, Q. (2020). "Responses of meteorological drought-hydrological drought propagation to watershed scales in the upper Huaihe River basin, China." Environmental Science and Pollution Research, EuChemS, Vol. 27, pp. 17561-17570, https://doi.org/10.1007/s11356-019-06413-2. 
  25. Water Resources Management Information System (2023). Water Resources Management Information System, Available at: http://www.wamis.go.kr/wkw/wkw_cms_lst.do (Accessed: November 15, 2023) (in Korean).
  26. Wu, J., Yao, H., Chen, X., Wang, G., Bai, X. and Zhang, D. (2022). "A framework for assessing compound drought events from a drought propagation perspective." Journal of Hydrology, Elseiver, Vol. 604, 127228, https://doi.org/10.1016/j.jhydrol.2021.127228. 
  27. Zhou, Z., Shi, H., Fu, Q., Ding, Y., Li, T. and Liu, S. (2021). "Investigating the propagation from meteorological to hydrological drought by introducing the nonlinear dependence with directed information transfer index." Water Resources Research, AGU, Vol. 57, No. 8, e2021WR030028, https://doi.org/10.1029/2021WR030028.