• Title/Summary/Keyword: drought

Search Result 2,100, Processing Time 0.028 seconds

Development of Quantitative Drought Representation Methods by Drought Index Application (가뭄지수의 적용성 분석을 통한 가뭄의 정량적 표현기법 개발)

  • Jeong, Sang-Man;Lee, Joo-Heon;Kim, Lee-Hyung;Kim, Ha-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1166-1171
    • /
    • 2006
  • Drought is defined by differently for the several scientific and technical fields such as hydrological drought, agricultural drought, meteorological drought, climatological drought, atmospheric drought. A lot of drought indices have been developed to quantify drought severity levels. However these drought indices might be expressed differently as the drought conditions for specific period because the drought severity level is using different types of data on each condition. It is necessary for development of quantative drought representation methods by drought index application. In this research, the reaction to the historical droughts is analyzed after estimation of PDSI, SPI and MSWSI(Modified Surface Water Supply Index) in south korean territory. Lastly the drought representation methods were examiner combining the drought indices by drought indices. The arithmetic mean drought indices that include PDSI, SPI, in yearly basis from 1971 to 2001 and MSWSI in yearly basis from 1974 to 2001 were estimated through the whole nation. The applicability of drought indices are examined based on the observed drought data for national and regional droughts. The result shows that PDSI, SPI(3), SPI(6), and MSWSI have proven to be sensitive enough to the historical drought. The correlation analysis of each drought index was conducted whether they could show the long and short term drought equally. The analysis of how appropriately represent for the historical drought was used for determining for the combined drought index. Consequently, PDSI, SPI(3), SPI(6), and MSWSI have been appeared as suitable indices for the development of quantitative drought representation methods. For the decision of weight on combining PDSI, SPI(3), SPI(6), and MSWSI, drought map was made for eighteen alternative to decide weight. The results showed that PDSI(20%), SPI(3)(60%), SPI(6)(10%), and MSWSI(10%) have been the most well matched weights. Using selected weights of each drought indices and by reconstructing the national mean drought severity on yearly basis, the fact that the year of historical drought is in accordance with the verified one for drought representation. In short, the acquired technique using combined drought index can be used for useful and believable quantitative method of drought analysis.

  • PDF

Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices (기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석)

  • Won, Kwang Jai;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.509-518
    • /
    • 2016
  • This study assessed drought of Cheongmicheon watershed from 1985 to 2015 according to duration. In order to quantify drought, we used meteorological and hydrological drought index. Standardized Precipitation Index(SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index(SPEI) based on precipitation and evapotranspiration were applied as meteorological drought index. Palmer Drought Severity Index(PDSI) and Stream Drought Index(SDI) based on simulation of Soil and Water Assessment Tool(SWAT) model were applied as agricultural and hydrological drought index. As a result, in case average of extreme and averaged drought, 2014 and 2015 have the most vulnerable in all drought indices. Variation of drought showed different trend with regard to analysis of frequency. Also, the extreme and averaged drought have high correlation between drought indices excluding between PDSIs. However, each drought index showed different occurrence year and severity of drought Therefore, drought indices with various characteristics were used to analysis drought.

Development of Drought Monitoring System: II. Quantitative Drought Monitoring and Drought Outlook Methodology (가뭄모니터링 시스템 구축: II. 정량적 가뭄 모니터링 및 가뭄전망기법 개발)

  • Lee Joo-Heon;Jeong Sang-Man;Kim Jea-Han;Ko Yang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.801-812
    • /
    • 2006
  • In this study, Combined Drought Index which can monitor the drought severity and intensity has been developed using PDSI, SPI and MSWSI. To verify the accuracy and applicability of combined drought index, Drought map of Korea using the combined drought index has compared with past drought event. Drought map using the combined drought index shows good accordance with past drought event and accurate quantitative drought monitoring results. Also the drought outlook technique has been developed using the weather forecast data of Korea Meteorological Administration (KMA). Drought outlook technique of this study can be used effectively as a primitive stage tool for real time drought forecast. As a result of this study, Integrated drought monitoring system has been developed which has capabilities of producing and generating the drought monitoring map and drought outlook map as well as various kinds of drought related information.

Application of Meteorological Drought Indices for North Korea (북한지역에 대한 기상학적 가뭄지수의 적용)

  • Nam, Won-Ho;Yoo, Seung-Hwan;Jang, Min-Won;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.3-15
    • /
    • 2008
  • North Korea is one of the vulnerable countries facing the threat of a drought, so that it is unavoidable to experience fatal damage when drought is occurred, and it is necessary to improve the drought response capability of water resources systems. However, it is still difficult to find research efforts for drought characteristics and drought management in North Korea. This study is to quantify drought duration and magnitude and to analyze drought characteristics in North Korea. In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices are commonly used. In this study, drought indices including dry-day index, deciles of normal precipitation, Phillips drought index, standardized precipitation index and Palmer drought severity index are calculated and compared monthly using the weather data for the twenty one meteorological stations in North Korea. The indices compared with the drought damage records that have reported from 1990 to present to understand how the indices can explain the drought. A comparative study was also conducted to evaluate the relative severity of the significant droughts occurred during 2000 and 2001 which were reported as the worst drought in North Korea. Drought indices calculated from this study demonstrated that those can be the effective tools in quantitatively evaluating drought severity and measures of drought. Thus it is recommended the distributed trend of drought be considered when the plan or measures for drought in North Korea are established.

Agricultural Drought Risk Assessment using Reservoir Drought Index (저수지 가뭄지수를 활용한 농업가뭄 위험도 평가)

  • Nam, Won Ho;Choi, Jin Yong;Jang, Min Won;Hong, Eun Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions

  • Son, Bokyung;Im, Jungho;Park, Sumin;Lee, Jaese
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.815-831
    • /
    • 2021
  • Drought forecasting is crucial to minimize the damage to food security and water resources caused by drought. Satellite-based drought research has been conducted since 1980s, which includes drought monitoring, assessment, and prediction. Unlike numerous studies on drought monitoring and assessment for the past few decades, satellite-based drought forecasting has gained popularity in recent years. For successful drought forecasting, it is necessary to carefully identify the relationships between drought factors and drought conditions by drought type and lead time. This paper aims to provide an overview of recent research trends and challenges for satellite-based drought forecasts focusing on lead times. Based on the recent literature survey during the past decade, the satellite-based drought forecasting studies were divided into three groups by lead time (i.e., short-term, sub-seasonal, and seasonal) and reviewed with the characteristics of the predictors (i.e., drought factors) and predictands (i.e., drought indices). Then, three major challenges-difficulty in model generalization, model resolution and feature selection, and saturation of forecasting skill improvement-were discussed, which led to provide several future research directions of satellite-based drought forecasting.

Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea) (식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가)

  • Nam, Won-Ho;Tadesse, Tsegaye;Wardlow, Brian D.;Jang, Min-Won;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.

Improvement of Drought Operation Criteria in Agricultural Reservoirs (농업용 저수지 이수관리를 위한 저수율 가뭄단계기준 개선)

  • Mun, Young-Sik;Nam, Won-Ho;Woo, Seung-Beom;Lee, Hee-Jin;Yang, Mi-Hye;Lee, Jong-Seo;Ha, Tae-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.

농업가뭄의 평가를 위한 가뭄지수의 적용성 분석

  • Park, Gi-Uk;Kim, Jin-Taek;Ju, Uk-Jong;Lee, Yong-Jik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.72-81
    • /
    • 2006
  • The objictive of this study is to analyze regional drought using agricultural drought indicator. Toforecast and evaluate the drought, the drought indices for agriculture were applied. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. There are many drought index to analyze and evaluate the drought. However, these indices do not exactly explain all drought events. Thus, we select 4 drought indices to evaluate agricultural drought:reservoir storage index, 3-month delayed SPI, mean rainfall index, and dry day index. Using these ineices, six drought stages are classified. The results show that agricultural drought could be apprppriately analyzed and evaluated by agricultural drought stage and four drought indices.

  • PDF

Study on Establishment of Master Plan flor Drought Management Information System (가뭄관리정보시스템 마스터플랜수립 연구)

  • Park Jin Hyeog;Koh Deuk Koo;Lee Geun Sang;Hwang Eui Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1481-1485
    • /
    • 2005
  • This study aims at establishing master plan for efficient establishment of comprehensive drought management information system as non-structural drought counterplan which provides drought damage in advance. Domestic and abroad research related to drought were surveyed and analyzed through many literature and internet for systematic drought management information system. Long-term master plan for comprehensive drought management information system is divided into 3 steps. In first step, drought monitoring system including development of hydrological drought assessment index, drought outlook analysis method and GIS web based drought monitering system is established. In second step, water supply plan and guideline through water shortage danger assessment by areal characteristics is established. In third step, comprehensive management information system through export system linked to KORSIM and establishment of information shared system between each bureau related to drought. Based on this study, master plan for efficient development and application of drought management information system is proposed, it is expected to be applied as guideline for second and third step of drought management information system.

  • PDF