Browse > Article
http://dx.doi.org/10.5389/KSAE.2022.64.4.011

Improvement of Drought Operation Criteria in Agricultural Reservoirs  

Mun, Young-Sik (National Agricultural Water Research Center, Hankyong National University)
Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University)
Woo, Seung-Beom (Samin Spatial Data Corporation Research Institute)
Lee, Hee-Jin (Department of Convergence of Information and Communication Engineering, Hankyong National University)
Yang, Mi-Hye (Korea Rural Community Corporation, Chungnam Regional Headquarter)
Lee, Jong-Seo (Korea Rural Community Corporation, Chungnam Regional Headquarter)
Ha, Tae-Hyun (Agricultural Drought Mitigation Center, Integrated Water Resources Management Department, Korea Rural Community Corporation)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.64, no.4, 2022 , pp. 11-20 More about this Journal
Abstract
Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.
Keywords
Reservoir; agricultural drought; percentile; operation rule; water level; drought criteria;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Jeon, M. G., W. H. Nam, M. H. Yang, Y. S. Mun, E. M. Hong, J. H. Ok, S. A. Hwang, and S. O. Hur, 2021. Assessment of upland drought using soil moisture based on the water balance analysis. Journal of the Korean Society of Agricultural Engineers 63(5): 1-11. doi:10.5389/KSAE.2021.63.5.001. (in Korean).   DOI
2 Seo, J. H., H. W. Ji, and Y. J. Kim, 2021. Measures to manage the risk of storm and flood damage to adapt to climate change, focusing on drought disasters. Water for Future 54(2): 68-73. (in Korean).
3 Sung, J. H., K. S. Chae, and D. E. Kim, 2017. The effects of droughts and public investments in irrigation facilities on rice yields in Korea. Korean Journal of Agricultural and Forest Meteorology 19(4): 293-30.3 (in Korean). doi:10.5532/KJAFM.2017.19.4.293.   DOI
4 Kim, S. J., C. G. Jung, and J. W. Lee, 2017. Agricultural drought and rural flood prevention strategies. Rural Resource 59(4): 19-25. (in Korean).
5 Jang, J. S., 2019. Hydrometeorological characteristics and the spatial distribution of agricultural droughts. Journal of the Korean Society of Agricultural Engineers 61(2): 105-115. doi:10.5389/KSAE.2019.61.2.105. (in Korean).   DOI
6 Chikamoto, Y., S. Y. S. Wang, M. Yost, L. Yocom, and R. R. Gillies, 2020. Colorado River water supply is predictable on multi-year timescales owing to long-term ocean memory. Communications Earth & Environment 1: 26. doi:10.1038/s43247-020-00027-0.   DOI
7 Choi, S. B., 2021. 2019 National drought information statistics collection. Ministry of Public Administration and Security. (in Korean).
8 Choi, Y. J., E. K. Lee, J. W. Ji, and J. E. Yi, 2020. Water yield evaluation of a reservoir system based on a deficit supply in the Han river basin. Journal of the Korean Society of Civil Engineers 40(5): 477-484. doi:10.12652/Ksce.2020.40.5.0477. (in Korean).   DOI
9 Lee, K. D., K. H. Son, and B. J. Lee, 2020. A study on determining threshold level of precipitation for drought management in the dam basin. Journal of Korea Water Resources Association 53(4): 293-301. doi:10.3741/JKWRA.2020.53.4.293. (in Korean).   DOI
10 Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, T. G. Kim, J. H. Park, and D. E. Kim, 2020. Percentile approach of drought severity classification in evaporative stress index for South Korea. Journal of the Korean Society of Agricultural Engineers 62(2): 63-73. doi:10.5389/KSAE.2020.62.2.063. (in Korean).   DOI
11 Mun, Y. S., W. H. Nam, M. H. Yang, J. H. Shin, M. G. Jeon, T. G. Kim, S. Y. Lee, and K. Y. Lee, 2021. Evaluation of agricultural drought disaster vulnerability using Analytic Hierarchy Process (AHP) and entropy weighting method. Journal of the Korean Society of Agricultural Engineers 63(3): 1-14. doi:10.5389/KSAE.2021.63.3.001. (in Korean).   DOI
12 Nam, W. H., T. G. Kim, J. Y. Choi, and J. J. Lee, 2012. Vulnerability assessment of water supply in agricultural reservoir utilizing probability distribution and reliability analysis methods. Journal of the Korean Society of Agricultural Engineers 54(2): 37-46. doi:10.5389/KSAE.2012.54.2.037. (in Korean).   DOI
13 Nam, W. H., J. Y. Choi, M. W. Jang, and E. M. Hong, 2013. Agricultural drought risk assessment using reservoir drought index. Journal of the Korean Society of Agricultural Engineers 55(3): 41-49. doi:10.5389/KSAE.2013.55.3.041. (in Korean).   DOI
14 Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.   DOI
15 Shin, J. H., W. H. Nam, N. K. Bang, H. J. Kim, H. U. An, J. W. Do and K. Y. Lee, 2020. Assessment of water distribution and irrigation efficiency in agricultural reservoirs using SWMM Model. Journal of the Korean Society of Agricultural Engineers 62(3): 1-13. (in Korean). doi:10.5389/KSAE.2020.62.3.001.   DOI
16 Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters 41: 1537-1545. doi:10.1002/2014GL059323.   DOI
17 Hong, E. M., J. Y. Choi, W. H. Nam, J. K. Choi, and J. T. Kim, 2015. Analysis of water loss rate and irrigation efficiency in irrigation canal at the Dong-Jin district. Journal of the Korean Society of Agricultural Engineers 57(2): 93-101. doi:10.5389/KSAE.2015.57.2.093. (in Korean).   DOI
18 Kim, S. J., T. Y. Park, S. M. Kim, and S. M. Kim, 2012. The proxy variables selection of vulnerability assessment for agricultural infrastructure according to climate change. Korean National Committee on Irrigation and Drainage 18(2): 33-42. (in Korean).
19 Mun, Y. S., W. H. Nam, T. G. Kim, E. M. Hong, and C. Y. Sur, 2020. Evaluation and comparison of meteorological drought index using multi-satellite based precipitation products in East Asia. Journal of the Korean Society of Agricultural Engineers 62(1): 85-95. doi:10.5389/KSAE.2020.62.1.085. (in Korean).
20 Choi, J. D., and Y. H. Choi, 2002. Return flow rate estimation of irrigation for paddy culture in Chuncheon region of the North Han river basin. Korea National Committee on Irrigation and Drainage 9(2): 68-77. (in Korean).
21 Kim, J. M., J. H. Park, S. H. Jang, and H. W. Kang, 2018. Development and effective analysis of termination criteria at each drought response stage in a multipurpose dam. Journal of the Korean Society of Hazard Mitigation 18(5): 23-31. doi:10.9798/KOSHAM.2018.18.5.23. (in Korean).   DOI
22 Kim, H. S., J. H. Park, S. U. Kang, and S. H. Jang, 2019. Improvement and evaluation of multi-purpose dam operation rule considering climate change. Journal of Wetlands Research 21(1): 9-15. doi:10.17663/JWR.2019.21.s-1.9. (in Korean).   DOI
23 Lee, D. H., C. W. Choi, M. S. Yu, and J. E. Yi, 2012. Reevaluation of multi-purpose reservoir yield. Journal of Korea Water Resources Association 45(4): 361-371. doi:10.3741/JKWRA.2012.45.4.361. (in Korean).   DOI
24 Kim, H. Y., W. H. Nam, Y. S. Mun, N. K. Bang, and H. J. Kim, 2021. Estimation of irrigation return flow on agricultural watershed in Madun reservoir. Journal of the Korean Society of Agricultural Engineers 63(2): 85-96. doi:10.5389/KSAE.2021.63.2.085. (in Korean).   DOI
25 Kim, J. U., J. Y. Lee, and S. J. Kim, 2019. Evaluation of the future agricultural drought severity of South Korea by using Reservoir Drought Index (RDI) and climate change scenarios. Journal of Korea Water Resources Association 52(6): 381-395. doi:10.3741/JKWRA.2019.52.6.381. (in Korean).   DOI