• Title/Summary/Keyword: droplets

Search Result 1,449, Processing Time 0.027 seconds

Anti-obesity effect of Polygala tenuifolia (원지(Polygala tenuifolia)의 항비만 효과)

  • Hwang, Ju-Young;Wu, Yong-Xiang;Hwang, Dae-Il;Bae, Suk-Jae;Kim, Taewan
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • This study was performed in order to investigate the anti-obesity effect of Polygala tenuifolia on lipid mechanism in 3T3-L1 adipocytes. The chemical composition of the P. tenuifolia was analyzed in order to assess its nutritional value. Total dietary fiber was the highest among the proximate component of the P. tenuifolia. These results showed that the P. tenuifolia may be used as a potential functional ingredient for anti-obesity effect. Intracellular lipid droplets in the adipocyte were stained with oil-red O dye and quantified. In comparison to the control, lipid accumulation was significantly decreased by 40.1% and 22.4% when treated with the water extract and 70% EtOH extract of the P. tenuifolia at the concentration of $10{\mu}g/mL$, respectively. The anti-adipogenic effect of the water extract was stronger than that of the 70% EtOH extract. The gene expression levels were measured via Western blot and real-time PCR. As a result, the water extract was found to have decrease the gene expression of SREBP-1c, PPAR, $C/EBP{\alpha}$, FAS, ACC in a dose-dependent manner. These indicate that the water extract inhibits pre-adipocyte differentiation and adipogenesis by blocking the SREBP-1c gene expression in 3T3-L1 cells. Therefore, P. tenuifolia can be used as an effective anti-obesity agent.

Suppressive Effect of Acorn (Quercus acutissima Carr.) Extracts in 3T3-L1 Preadipocytes (도토리 추출물의 3T3-L1 세포 분화억제 효과)

  • Kim, Ji-Yeon;Lee, Jin;Lee, Chang-Won;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.650-657
    • /
    • 2015
  • This study aimed to investigate the suppressive effect of acorn extracts, by evaluating 70% ethanol extract (AE) and hot water extract (AW) using 3T3-L1 preadipocytes. We applied various levels (0, 100, 200, 300 and $500 {\mu}g/mL$) of AE and AW to 3T3-L1 preadipocytes. The cell viability of the 3T3-L1 preadipocytes was not affected by up $300 {\mu}g/mL$ of extracts, but was suppressed by level $500{\mu}g/mL$ of both AE and AW by 20% and 9% respectively. The accumulation of lipid droplets in differentiated 3T3-L1 preadipocytes was dose-dependently suppressed by AE and AW. Especially, at high concentrations ($300{\mu}g/mL$), AE (42%) was more effective than AW (41%). Reactive oxygen species (ROS) was also dose-dependently suppressed by treatment with AE (58%) and AW (52%). With regard to the mRNA related to differentiated 3T3-L1 preadipocytes, $PPAR-{\gamma}$ and aP2 were suppressed by treatment with AE (54 and 40%) and AW (38 and 18%). From our results, acorn extract (AE) has more suppressive effects than AW in differentiated 3T3-L1 preadipocytes. We therefore concluded that acorn has suppressive effects against obesity in differentiated 3T3-L1 cells due to antioxidation.

A Study on the Moisturizing Effect and Preparation of Liquid Crystal Structures Using Sucrose Distearate Emulsifier (슈크로오스디스테아레이트를 사용한 액정구조의 생성과 보습효과에 관한 연구)

  • Kwak, Myeong-Heon;Kim, In-Young;Lee, Hwan-Myung;Park, Joo-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This study is to make the liquid crystalline structure using sucrose distearate (Sucro-DS) emulsifier to create the hydrophilic type oil-in-water (O/W) emulsion, the droplets of the emulsion having a structure of a multi-lamellar structure. We have studied the physicochemical properties of Sucro-DS using those techniques. And it has been studied in the emulsion performance. In order to form the liquid crystalline structure applying 3 wt% of Sucro-DS, 5 wt% of glycerin, 5 wt% of squalane, 5 wt% of capric/caprylic triglyceride, 3wt% of cetostearyl alcohol, 1wt% of glyceryl mono-stearate, 78 wt% of pure water in mixture having the lamellar structure of stable multi-layer system was found to formed. By applying them, they were described how to create an unstable active material encapsulated cream. Further, the moisturizing cream was studied using this technique. It reported the results to the skin improvement effect by the human clinical trials. The pH range to produce a stable liquid crystal phase using a Sucro-DS was maintained in 5.2~7.5. In order to increase the stability of the liquid crystal, it was when behenyl alcohol containing 3 wt%, the hardness at this time was 13 kg/mm,min. Viscosity of the same amount was 25,000mPas/min. After a test for the effects of the emulsions, the concentration of 6 wt% Sucro-DS is that was appropriate, the particle size of the liquid crystal was 4~6mm. It was observed through a microscope analysis, reliability of the liquid crystal changes for 3 months was found to get stable at each $4^{\circ}C$, $25^{\circ}C$ and $45^{\circ}C$. In clinical trial test, before applying a moisturizing effect it was $13.4{\pm}7%$. Moisturizing cream liquid crystal was not formed in $14.5{\pm}5%$. Therefore, applying than ever before could see the moisture about 8.2% was improved. On the other hand, it was the moisturizing effect of the liquid cream is $19.2{\pm}7%$. The results showed that 43.3% improvement than that previously used. Applications fields, Sucro-DS emulsifier used liquid cream, lotion, eye cream and a variety of formulations can be developed, as well as the cosmetics industry is expected to be wide fields in the application of the external preparation for skin emulsion technology in the pharmaceutical industry and pharmaceutical industry.

Clinical investigation of lipoid pneumonia in adults (성인에서 발생한 지방성 폐렴의 임상적 고찰)

  • Hyun, Jae Geun;Rhee, Chong H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.965-975
    • /
    • 1996
  • Background : Exogenous lipoid pneumonia is caused by inhalation or aspiration of animal, vegetable or mineral oil. Most cases are ascribed to aspiration of oil in laxatives or nose drops Petroleum, another pure hydrocarbon used as a base in various medications, is occasionally involved. Especially animal oil produces severe tissue inflammatory reaction, but most patients present with only abnormal chest X-ray and no specific clinical symptoms or signs. Method: Seven patients, 3 males and 4 females, with exogenous lipoid pneumonia, who was hospitalized or referred to pulmonary division at Samsung Medical Center from December 1994 10 July 1996, were included. They hadn a history of laking shark liver oil(so-called "squalene") for varying period of time. We reviewed clinical, radioloic and pathologic findings. Result: Patients look 7 to 30 capsules of "squalene" a day for at least one month to 5 years. Six cases had chronic disease such as diabetes, hypertension, or cerebrovascular accident. Respiratory symptoms of mild fever, cough and sputum were present in 3 cases and in 3 cases there was no clinical symptoms and signs but abnormal findings by chest X - ray. The major radiologic findings by simple chest X - ray and computed tomography consisted of consolidation, infiltration involving mainly right middle and both lower lobes, and ground-glass opacity. Five of six bronchoscopic examinations demonstrated both lipid droplets floating on the surface of bronchoalveolar lavage fluid and Lipid-laden macrophages in bronchoalveolar lavage fluid or lung tissue. Follow-up chest X -ray showed improvement in 4 cases but no marked interval change in 3 cases after removal of exposure to "squalene". Conclusion: Shark liver oil can induce lipoid pneumonia in adults. In case of high clinical suspicion, confirmation of "squalene" use by careful history taking is required and bronchoscopy is helpful in diagnosis.

  • PDF

Effects of Various Chitosan Oligomer Molecular Weight Levels on the Disorders of Lipid Metabolism and Immune-related Factors in Rats Treated 2,3,7,8-Tetrachlorodibenzo-p-dioxin (다이옥신계 TCDD(2,3,7,8-Tetrachlorodibenzo-p-dioxin)에 노출된 흰쥐의 지질대사 및 면역관련 인자에 대하여 키토산 올리고머의 분자량별 섭취효과)

  • Lee, Joon-Ho;Hwang, Seok-Youn;Lim, Beong-Ou;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.471-479
    • /
    • 2012
  • This study was conducted to investigate the effects of various levels of chitosan oligomer (CO) molecular weight on the disorders of lipid metabolism and immune-related factors induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), that is a endocrine disrupter, using adult male rats (SD) for 3 weeks. These 40 animals were divided into five groups. Three kinds of CO were used by molecular weight (MW) (less than 1000, 1000~3000, and 5000~10000) and added 4% to basal diets respectively. TCDD (40 ${\mu}g$/kg B.W) was intraperitoneally injected into rats at the beginning of the experiment. The relative weights of the livers were increased in all rats treated with TCDD, and the brain and testis weights were increased in all CO diet groups, compared to the control and TCDD groups. The levels of white blood cells (WBC) and red blood cells (RBC), hemoglobin, hematocrits (HCT), and platelets were significantly lowered by treating TCDD. By the way, RBC and HCT tended to recover by CO diets. The elevation of serum total and HDL cholesterol levels induced by TCDD treatment was significantly reduced by CO (5000~10000 MW) diets. The apparent increasing of the total lipid, cholesterol, and triglyceride levels of rat livers induced by TCDD was tended to be suppressed in those fed CO diets. Especially, diets with less than 1000 MW significantly diminished liver triglycerides. The levels of serum immunoglobulin (Ig) A, IgG1 and IgM were significantly high in rats fed CO (5000~10000 MW) diets. The decreasing levels of IgE by treatment with TCDD tended to recover all the CO diet groups to the level of control group. In histochemical observation, the fat droplets and apoptosis of liver due to TCDD treatment were markedly alleviated in all CO diet groups. These results indicated that CO, though not regular according to molecular weight, can exert improving effects on lipid accumulation, hepatocytic disorders, abnormal blood cells, and some immunoglobulins induced by TCDD.

Effect of Fermented Cucumber Beverage on Ethanol Metabolism and Antioxidant Activity in Ethanol-treated Rats (오이 발효음료가 만성적으로 에탄올을 급여한 흰쥐의 에탄올 대사와 항산화방어계에 미치는 영향)

  • Lee, Hae-In;Seo, Kwon-Il;Lee, Jin;Lee, Jeom-Sook;Hong, Sung-Min;Lee, Ju-Hye;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1099-1106
    • /
    • 2011
  • Cucumber fermentation has been used as a means of preservation. This study was performed to investigate the effects of fermented cucumber beverage (CF) containing beneficial materials for an ethanol hangover based on Hovenia dulcis (SKM) on ethanol-induced hepatotoxicity. Male Sprague-Dawley rats were randomly divided into three groups: ethanol control, ethanol plus SKM, and ethanol plus CF+SKM. SKM or CF+SKM was orally administered at a dose of 7 mL/kg body weight once per day for 5 weeks. Control rats were given an equal amount of water. CF+SKM significantly lowered plasma ethanol levels, whereas SKM tended to decrease the levels compared to the control. Both SKM and CF+SKM significantly lowered the plasma acetaldehyde levels and serum transaminase activities compared to those in the control. SKM and CF+SKM did not affect hepatic alcohol dehydrogenase activity; however, it significantly inhibited cytochrome P450 2E1 (CYP2E1) activity. Hepatic aldehyde dehydrogenase (ALDH) activity was significantly higher in the SKM and CF+SKM groups than that in the control group. Plasma acetaldehyde concentration was significantly correlated with hepatic CYP2E1 (r=0.566, p<0.01) activity and ALDH (r=-0.564, p<0.01) activity. Hepatic superoxide dismutase and catalase activities as well as glutathione content increased with the SKM and CF+SKM administration, whereas lipid peroxide content decreased significantly. Furthermore, SKM and CF+SKM lowered plasma and hepatic lipid content and lipid droplets compared to those in the control group. These results indicate that SKM and CF+SKM exhibit hepatoprotective properties partly by inhibiting CYP2E1 activity, enhancing ALDH activity and stimulating the antioxidant defense systems in ethanol-treated rats.

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Effect of Aqueous Phase Composition on the Stability of a Silica-stabilized Water-in-oil Emulsion (유화제로서 실리카를 이용한 유중수형 에멀젼의 안정성에 미치는 수상부 조성의 영향)

  • Kim Jin-Hwang;Kim Song-I;Kyong Kee-Yeol;Lee Eun-Joo;Yoon Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.353-359
    • /
    • 2004
  • The extent of silica flocculation can be modified by varying the silica concentration, aqueous phase pH, salt and polvmer concentration. High volume fraction W/O emulsion stabilized by hydrophobic silica was established with various aqueous phase conditions for cosmetic application. By increasing the silica concentration up to $1.0\;wt\%,$ the size of droplet decreased. A high silica concentration increased the viscosity of continuous oil phase by network formation, which resulted in target size of droplet. The stability of W/O emulsion is improved as increasing the aqueous phase pH. At low and intermediate pH, the emulsions became more stable by adding salt $(0.083\;mol\;dm^{-3}\;MgSO_4).$ At high PH, the presence of salt caused significant destabilization. The gelation behavior of the emulsion indicates that the effect of salt on silica-stabilized emulsion is derived from an electrostatic attraction. The addition of xanthan gum in aqueous phase increased the mono-dispersity of the W/O emulsion by making water more hydrophobic and hindering the recombination of droplets. In conclusion, these results indicate that very stable emulsifier-free, finely dispersed W/O emulsion can be achieved for cosmetic application by changing the aqueous phase composition.

Formation of Liquid Crystalline with Hydrogenated Lecithin and Its Effectiveness (수소첨가레시친을 이용한 액정 젤의 형성과 보습효과)

  • Kim, In-Young;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • This study described about method that forms liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in O/W emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following, to form liquid crystal, an emulsifier used 4.0wt% of cetostearyl alcohol (CA) by 4.0wt% of HL as a booster. Moisturizers contained 2wt% of glycerin and 3.0wt% of 1,3-butylene glycol (1,3-BG). Suitable emollients used 3.0wt% of cyclomethicone, 3.0wt% of isononyl isononanoate (ININ), 3.0wt% of cerpric/carprylic triglycerides (CCTG), 3.0wt% of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions (pH=4.0-11.0). Considering safety of skin, pH was the most suitable 6.0${\pm}$1.0 ranges. The stable hardness of LCG formation appeared best in 32 dyne/$\textrm{cm}^2$. Particle of LCG is forming size of 1-20$\mu\textrm{m}$ range, and confirmed that the most excellent LCG is formed in 1-6$\mu\textrm{m}$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi -layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased 36.6%. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.