• Title/Summary/Keyword: droplet's size

Search Result 152, Processing Time 0.022 seconds

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model (회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.404-410
    • /
    • 2020
  • In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.

Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion (마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조)

  • Nam, Jin-Oh;Choi, Chang-Hyung;Kim, Jongmin;Kang, Sung-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion's shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Amyloodinium sp. Infestation in Mullet (Mugil cephalus) cultured in a pond on land (육상 수조에서 사육 중인 숭어 (Mugil cephalus)의 Amyloodinium sp. 감염)

  • Park, Sung-Woo;Yu, Jin-Ha;Lee, Chun-Hee
    • Journal of fish pathology
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2006
  • Amyloodinium sp. was found on the gills of mullet (Mugil cephalus) cultured on land. No external symptoms in the diseased fish were found except decoloration of the gills. In fresh preparations of the gills the parasites were opaque round or oval shape with a bright nucleus and 43.5 ㎛ (18.2~72.7, n=20) in size. In preparations added a drop of Lugol solution, they were black with the same shapes in fresh preparations and 43.5 ㎛ (n=20) in size. The parasites were stained black and blue in a droplet of Lugol solution and Diff-Quick III solution, respectively and their sizes were a little larger than in wet preparations. After stained with May-Grunwald Giemsa, the parasites appeared granular eosinophlic in the peripheral cytoplasm and granular strong basophilic in the center. In silver impregnated specimens the peripheral granules were negative and the central ones positive. The granules appeared brown in purplish cytoplasm after staining with Lugol solution. The parasites developed by binary division when they were cultivated in filtered seawater at 20℃. Histopathologically severe epithelial hyperplasia and fusion in the gill filaments resulted in clubbing, especially the proximal region of the filament. Epithelial hyperplasia was also found in the basal regions of the gill filaments and some epithelial cells were occasionally detached from the filaments. Some pear-shaped trophonts of the parasites with rhizoid attached on the gill filaments showing hyperplasia of the epithelial cells and mucous cells.

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM (CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화)

  • Seheum Hong;Jiachen Hou;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2023
  • In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Analysis of Cloud Properties Related to Yeongdong Heavy Snow Using the MODIS Cloud Product (MODIS 구름 산출물을 이용한 영동대설 관련 구름 특성의 분석)

  • Ahn, Bo-Young;Cho, Kuh-Hee;Lee, Jeong-Soon;Lee, Kyu-Tae;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.71-87
    • /
    • 2007
  • In this study, 14 heavy snow events in Yeongdong area which are local phenomena are analyzed using MODIS cloud products provided from NASA/GSFC. The clouds of Yeongdong area at observed at specific time by MODIS are classified into A, B, C Types, based on the characteristic of cloud properties: cloud top temperature, cloud optical thickness, Effective Particle Radius, and Cloud Particle Phase. The analysis of relations between cloud properties and precipitation amount for each cloud type show that there are statistically significant correlations between Cloud Optical Thickness and precipitation amount for both A and B type and also significant correlation is found between Cloud Top Temperature and precipitation amount for A type. However, for C type there is not any significant correlations between cloud properties and precipitation amount. A-type clouds are mainly lower stratus clouds with small-size droplet, which may be formed under the low level cold advection derived synoptically in the East sea. B-type clouds are developed cumuliform clouds, which are closely related to the low pressure center developing over the East sea. On the other hand, C-type clouds are likely multi-layer clouds, which make satellite observation difficult due to covering of high clouds over low level clouds directly related with Yeongdong heavy snow. It is, therefore, concluded that MODIS cloud products may be useful except the multi-layer clouds for understanding the mechanism of heavy snow and estimating the precipitation amount from satellite data in the case of Yeongdong heavy snow.

Preparation of Cosmeceuticals Containing Wheat Sprout Extracts: Optimization of Emulsion Stability Using CCD-RSM (밀싹 추출물이 함유된 Cosmeceuticals의 제조: CCD-RSM을 이용한 유화안정성 최적화)

  • Jang, Hyun Sik;Ma, Xixiang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.320-325
    • /
    • 2021
  • In this study, an optimization for the production of water emulsion was designed by adding an extract of wheat sprout, which is known to contain a large amount of antioxidants. The central composite design of reaction surface analysis method (CCD-RSM) was used for the optimization process. The amount of emulsifier, emulsification time, and added amount of wheat sprout extract were selected as independent variables based on our preliminary experiments. The mean droplet size (MDS), viscosity, and emulsion stability index (ESI) were set as the responses to evaluate the stability of the emulsion. For each independent variable, the P-value and coefficient of determination were evaluated to verify the reliability of the experiments. From the result of CCD-RSM, optimum conditions for the emulsification were determined as 23.6 min, 7.7 wt.%, and 3.9 wt.% for the emulsification time, amount of emulsifier, and amount of sprout, respectively. From the optimized condition obtained, MDS, viscosity, and ESI after 7 days from reaction were estimated as 252.3 nm, 616.7 cP, and 88.7%, respectively. The overall satisfaction was 0.9137, which supported the validity of the experiments, and the error rate was measured at 0.5% or less by advancing the experiments. Therefore, an optimized process for producing an emulsion by adding the malt extract was designed by the CCD-RSM.

Emulsification of O/W Emulsion Using Natural Mixed Emulsifiers : Optimization of Emulsion Stability Using Central Composite Design-Reponse Surface Methodology (천연 혼합유화제를 이용한 O/W 유화액의 제조 : 중심합성계획모델을 이용한 유화안정성 최적화)

  • Seheum Hong;Cuiwei Chen;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.299-306
    • /
    • 2023
  • In this study, the O/W emulsification processes with the natural surfactants that were extracted from Medicago sativa L. and Sapindus saponaria L. as emulsifiers were optimized using the central composite design-response surface methodology (CCD-RSM). Herein, independent parameters were the amounts of mixed emulsifiers, the mixing ratio of natural emulsifiers (soapberry saponin/alfalfa saponin), and the emulsification time, whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and antioxidant activity (DPPH radical scanvenging activity). Through basic experiments, the ranges of operation variables for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 12~14 wt%, 30~70%, and 20~30 min, respectively. The optimum operation variables deduced from CCD-RSM for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 13.2 wt%, 44.2%, and 25.8 min, respectively. Under these optimal conditions, the expected values of the ESI, MDS, and antioxidant activity were 88.7%, 815.5 nm, and 38.7%, respectively. And, the measured values of the ESI, MDS, and antioxidant activity were 90.6%, 830.2 nm, and 39.6%, respectively, and the average experimental error for validating the accuracy was about 2.1%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process using CCD-RSM.