Browse > Article
http://dx.doi.org/10.14478/ace.2020.1042

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model  

Yoo, Bong-Ho (College of Engineering, Dankook University)
Zuo, Chengliang (Department of Chemical Engineering, Dankook University)
Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
Publication Information
Applied Chemistry for Engineering / v.31, no.4, 2020 , pp. 404-410 More about this Journal
Abstract
In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.
Keywords
Cosmeceuticals; Box-Behnken design model; Flos sophorae immaturus; Non-ionic surfactant;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. Homayoonfal, F. Khodaiyan, and M. Mousavi, Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability, Food Chem., 174, 649-659 (2015).   DOI
2 M. O. Saeed, K. Azizli, M. Isa and M. J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, 7-16 (2015).
3 M. Yolmeh, M. B. H. Najafi and R. Farhoosh, Optimisation of ultrasound- assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM), Food Chem., 155, 319-324 (2014).   DOI
4 M. Katsouli, V. Polychniatou and C. Tzia, Optimization of water in olive oil nano-emulsions coposition with bioactive compounds by response surface methodology, LWT Food Sci. Technol., 89, 740-748 (2018).   DOI
5 Y. Lu and L. Y. Foo, Antioxidant and radical scavenging activities of polyphenols apple pomace, Food Chem., 68, 81-85 (2000).   DOI
6 C. C. Zouboulis and E. Makrantonaki, Clinical aspects and molecular diagnostics of skin aging, Clin. Dermatol., 29, 3-14 (2011).   DOI
7 B. Polijsak, R. G. Dahmane, and A. Godic, Intrinsic skin aging: the role of oxidative stress, Acta Dermatovenerol. Alp. Pannonica Adriat., 21, 33-36 (2012).
8 M. A. Farage, K. W. Miller, P. Elsner, and H. I, Maibach, Intrinsic and extrinsic fators in skin ageing: A review, Int. J. Cosmet. Sci., 30, 87-95 (2008).   DOI
9 A. Alberti, A. A. F. Zelinski, D. M. Zardo, I. M. Demiate, A. Nogueira, and L. I. Mafra, Optimisation of the extraction of phenolic compounds from apples using response surface methodology, Food Chem., 149, 151-158 (2014).   DOI
10 P. E. Ohale, C. F. Uzoh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, Chem. Eng. J., 313, 993-1003 (2017).   DOI
11 S. Intahphuak, P. Khonsung, and A. Panthong, Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil, Pharm. Biol., 48(2), 151-157 (2010).   DOI
12 A. M. Marina, Y. B. Cheman, S. A. H. Nazimah, and I. Amin, Antioxidant capacity and phenolic acids of virgin coconut oil, Int. J. Food Sci. Nutr,, 60(2), 114-123 (2009).
13 G. Csoka, S. Marton, R. Zelko, N. Otomo, and I. Antal, Application of sucrose fatty acid esters in transdermal therapeutic systems, Eur. J. Pharm. Biopharm., 65(2), 233-237 (2007).   DOI
14 S. B. Lee, H. S. Jang, and B. H. Yoo, Preparation of waste cooking oil-based biodiesel using microwave energy: Optimization by box-behnken design model, Appl. Chem. Eng., 29(6), 746-752 (2018).   DOI
15 N. S. Neta, J. A. Teixeira, and L. R. Rodrigues, Sugar ester surfactants: Enzymatic synthesis and applications in food industry, Crit. Rev. Food Sci. Nutr., 55(5), 595-610 (2015).   DOI
16 S. S. Garud, I. A. Karimi, and M. Kraft, Design of computer experiments: A review, Comput. Chem. Eng., 106, 71-95 (2017).   DOI
17 H. Toyota, T. Asai, and N. Oku, Process optimization by use of design of experiments: Application for liposomalization of FK506, Eur. J. Pharm. Sci., 102, 196-202 (2017).   DOI
18 K. Han, C. Zuo and I. K. Hong, Extraction of antioxidants from Lonicera japonica and Sophora japonica L.: Optimization using central composite design model, Appl. Chem. Eng., 30(3), 337-344 (2019).   DOI
19 W. L. Kang, B. Xu, Y. J. Wang, Y. Li, X. H. Shan, F. An, and J. H. Liu, Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant, Colloids Surf. A, 384(1-3), 555-560 (2011).   DOI