• Title/Summary/Keyword: drop weight impact test

Search Result 84, Processing Time 0.022 seconds

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure (알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동)

  • Kim, Jin Woo;Won, Cheon;Lee, Dong Woo;Kim, Byung Sun;Bae, Sung In;Song, Jung Il
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (II) -Comparison of properties between domestic and French-made products- (압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (II) -수명향상을 위한 국산과 외산소재의 물성과 파괴특성비교-)

  • Suh, Chang-Min;Suh, Min-Soo;Oh, Sang-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.40-46
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditions ($570^{\circ}C$) to analyze the cause and prevent the roll shell steel's brittle fracture and its damage.

Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (I))

  • Suh, Chang-Min;Suh, Min-Soo;Cho, Hae-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.33-39
    • /
    • 2011
  • This study involved a series of experiments, which included impact tests (drop weight & Charpy) and hardness tests under various heat treatment conditions, followed by fractography observations of Normal Roll Shell steel (NRS), Abnormal Roll Shell steel (ARS), and S25C steel, in order to analyze the cause of brittle fracture and damages in Roll Shell steel. The optimal tempering temperature was characterized for ARS and NRS.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Effects of Specimen Thickness and Notch Shape on Fracture Mode Appearing in Drop Weight Tear Test (DWTT) Specimens of API X70 and X80 Linepipe Steels (API X70 및 X80 라인파이프강의 DWTT 시편 파괴 형태에 미치는 시편 두께와 노치 형태의 영향)

  • Hong, Seokmin;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.705-716
    • /
    • 2010
  • Effects of specimen thickness and notch shape on fracture mode appearing in drop weight tear test (DWTT) specimens of API X70 and X80 linepipe steels were investigated. Detailed microstructural analysis of fractured DWTT specimens showed that the fractures were initiated in normal cleavage mode near the specimen notch, and that some separations were observed at the center of the fracture surfaces. The Chevron-notch (CN) DWTT specimens had broader normal cleavage surfaces than the pressed-notch (PN) DWTT specimens. Larger inverse fracture surfaces appeared in the PN DWTT specimens because of the higher fracture initiation energy at the notch and the higher strain hardening in the hammer-impacted region. The number and length of separations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency to separations increased, but separations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results, such as upper shelf energy and energy transition temperature, were discussed in relation with microstructures and fracture modes including cleavage fracture, shear fracture, inverse fracture, and separations.

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

Barely Visible Impact Damage Detection Analyses of CFRP by Various NDE Techniques (다양한 비파괴 측정 방법에 의한 CFRP의 BVID 분석)

  • Lim, Hyunmin;Lee, Boyoung;Kim, Yeong K.
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • This study aims to detecting and analyzing the defects of damaged carbon fiber reinforced composites after impacts, particularly focusing on barely visible impact damages. The impact test was progressed by a drop-weight machine and applied to introduce simulated damages on laminated composites used in aircrafts. Various nondestructive testing (NDT) techniques were applied to identify the defects on the specimens with different levels of impact energies. Based on the measurements data, the levels of the barely visible impacts, and the applicability and effectiveness of the detection methods were discussed. Generally, the results demonstrated that their inner damages contained bigger footprints than those on the surfaces. However, when the damage energy was low, it was found that the inner damage size could be smaller than those appeared on the surfaces.