Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.2.165

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer  

Zhang, Yitian (Hunan Construction Engineering Group Co., Ltd.)
Shan, Bo (Ministry of Education Key Laboratory of Building Safety and Energy Efficiency, Hunan University)
Kang, Thomas H.K. (Department of Architecture and Architectural Engineering, Seoul National University)
Xiao, Yan (Zhejiang University - University of Illinois Joint Institute, Zhejiang University)
Publication Information
Steel and Composite Structures / v.38, no.2, 2021 , pp. 165-176 More about this Journal
Abstract
Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.
Keywords
CCFT = confined concrete filled steel tube; CFT = concrete filled steel tube; CFRP = carbon fiber reinforced polymer; BFRP = basalt fiber reinforced polymer; GFRP = glass fiber reinforced polymer; LS-DYNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alam, M.I., Fawzia, S., Zhao, X.L., Remennikov, A.M., Bambach, M.R. and Elchalakani, M. (2017), "Performance and dynamic behaviour of frp strengthened cfst members subjected to lateral impact", Eng. Struct., 147, 160-176, https://doi.org/10.1016/j.engstruct.2017.05.052.   DOI
2 Anderson, D. (2014), Eurocode 4 - design of composite steel and concrete structures, Springer Berlin Heidelberg.
3 Aslani, F., Uy, B., Wang, Z.W. and Patel, V. (2016), "Confinement models for high strength short square and rectangular concrete-filled steel tubular columns", Steel Compos. Struct., 22(5), 937-974, https://doi.org/10.12989/scs.2016.22.5.937.   DOI
4 ASTM (2000), "Standard test method for tensile properties of polymer matrix composite material", ASTM D3039 West Conshohocken, PA.
5 Beton (1991), "Ceb-fip model code 1990".
6 Briaud, J.L. and Hunt, B.E. (2006). "Bridge scour and the structural engineer", Structure December,
7 Chen, C., Zhao, Y.H. and Li, J. (2015), "Experimental investigation on the impact performance of concrete-filled frp steel tubes", J. Eng. Mech., 141(2), 11. https://doi.org/10.1061/(asce)em.1943-7889.0000833.   DOI
8 Cowper, G.R. and Symonds, P.S. (1957), "Strain hardening and strain rate effect in the impact loading of cantilever beams", Small Business Economics, 31(3), 235-263.   DOI
9 Deogekar, P.S. and Andrawes, B. (2018), "Hybrid confinement of high strength concrete using shape memory alloys and fiber-reinforced polymers", J. Struct. Integrity Maint., 3(1), 22-32.   DOI
10 Hallquist, J. (2003), "Ls-dyna keyword user's manual, version: 970".
11 Huo, J., Zheng, Q., Chen, B. and Xiao, Y. (2009), "Tests on impact behaviour of micro-concrete-filled steel tubes at elevated temperatures up to 400℃", Mater. Struct., 42(10), 1325.   DOI
12 Han, L.H., Hou, C. and Wang, Q.L. (2012), "Square concrete filled steel tubular (cfst) members under loading and chloride corrosion: Experiments", J. Constr. Steel Res., 71, 11-25.   DOI
13 Hong, J.K. and Kang, T.H.K. (2018), "Computing in protection engineering: Cfd analysis of blade fragment impact on concrete wall", J. Struct.Integrity Maint., 3(4), 210-216.   DOI
14 Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng. - ASCE, 129(10), 1322-1329. https://doi.org/10.1016/(asce)0733-9445(2003)129:10(1322).   DOI
15 Kanishchev, R. and Kvocak, V. (2019), "Local buckling of rectangular steel tubes filled with concrete", Steel Compos. Struct., 31(2), 201-216. https://doi.org/10.12989/scs.2019.31.2.201.   DOI
16 Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for frp-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/s0950-0618(03)00045-x.   DOI
17 Murray, Y.D., Abuodeh, A.Y. and Bligh, R.P. (2007), "Evaluation of ls-dyna concrete material model 159", Concrete,
18 Mao, X.Y. and Xiao, Y. (2006), "Seismic behavior of confined square cft columns", Eng. Struct., 28(10), 1378-1386.   DOI
19 Mirmomeni, M., Heidarpour, A., Zhao, X.L., Al-Mahaidi, R. and Packer, J.A. (2017), "Size-dependency of concrete-filled steel tubes subject to impact loading", Int. J. Impact Eng., 100, 90-101. https://doi.org/10.1016/j.ijimpeng.2016.11.003.   DOI
20 Mohan, S.B. and Sharma, S. (2011), "Status of bridge failures in the united states (1800-2009)", Proc., Transportation Research Board 90th Annual Meeting.
21 Mutalib, A.A. and Hao, H. (2011), "Development of p-i diagrams for frp strengthened rc columns", Int. J. Impact Eng., 38(5), 290-304. https://doi.org/10.1016/j.ijimpeng.2010.10.029.   DOI
22 Pham, T.M. and Hao, H. (2017), "Axial impact resistance of frp-confined concrete", J. Compos. Constr., 21(2), https://doi.org/10.1061/(asce)cc.1943-5614.0000744.   DOI
23 Singh, N.K., Cadoni, E., Singha, M.K. and Gupta, N.K. (2013), "Dynamic tensile and compressive behaviors of mild steel at wide range of strain rates", J. Eng. Mech., 139(9), 1197-1206. https://doi.org/10.1061/(asce)em.1943-7889.0000557.   DOI
24 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188.   DOI
25 Shan, J.H. and Chen, R. (2007), "Behavior of concrete filled tubes and confined concrete filled tubes under high speed impact", Adv. Struct. Eng., 10(2), 209-218. https://doi.org/10.1260/136943307780429725.   DOI
26 Singh, N.K., Cadoni, E., Singha, M.K. and Gupta, N.K. (2013), "Dynamic tensile and compressive behaviors of mild steel at wide range of strain rates", J. Eng. Mech. - ASCE, 139(9), 1197-1206.   DOI
27 Varma, A.H., Ricles, J.M. and Sause, R. (2004), "Seismic behavior and design of high-strength square concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 169-179.   DOI
28 Tao, Z., Uy, B., Liao, F.Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Constr.Steel Res., 67(11), 1719-1732.   DOI
29 Teng, J.G., Yu, T., Wong, Y.L. and Dong, S.L. (2007), "Hybrid frp-concrete-steel tubular columns: Concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017.   DOI
30 Tomii, M., Yoshimura, K. and Morishita, Y. (1977), "Experimental studies on concrete filled steel tubular stub columns under concentric loading", Proc., International Colloquium on Stability of Structures Under Static & Dynamic Loads, March.
31 Wei, Y.Y. and Wu, Y.F. (2012), "Unified stress-strain model of concrete for frp-confined columns", Constr. Build. Mater., 26(1), 381-392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.   DOI
32 Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Experimental behavior of high strength square concrete-filled steel tube beam-columns", J. Struct. Eng., 128(3), 309-318.   DOI
33 Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D. and Kang, W.H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.   DOI
34 Wardhana, K. and Hadipriono, F.C. (2003), "Analysis of recent bridge failures in the united states", J. Perform. Constr. Fac., 17(3), 124-135,
35 Xiao, Y. and He, W.H. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng. - ASCE, 131(3), 488-497. https://doi.org/10.1061/((asce)0733-9445(2005)133:3(488).   DOI
36 Zhang, T., Ding, F.X., Wang, L.P., Liu, X.M. and Jiang, G.S. (2018). "Behavior of polygonal concrete-filled steel tubular stub columns under axial loading", Steel Compos. Struct., 28(5), 573-588. https://doi.org/10.12989/scs.2018.28.5.573..   DOI
37 Xiao, Y., Shan, J., Zheng, Q., Chen, B. and Shen, Y. (2009), "Experimental studies on concrete filled steel tubes under high strain rate loading", J. Mater. Civil Eng., 21(10), 569-577. https://doi.org/10.1061/(asce)0899-1561(2009)21:10(569).   DOI
38 Xiao, Y. and Shen, Y.L. (2012), "Impact behaviors of cft and cfrp confined cft stub columns", J. Compos. Constr., 16(6), 662-670. https://doi.org/10.1061/(asce)cc.1943-5614.0000294.   DOI
39 Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stressstrain model for concrete confined by frp composites", Compos. Part B - Eng., 38(5-6), 614-628, https://doi.org/10.1016/j.compositesb.2006.07.020.   DOI
40 Zeng, J.J., Lin, G., Teng, J.G. and Li, L.J. (2018), "Behavior-of large-scale frp-confined rectangular rc columns under axial compression", Eng. Struct., 174, 629-645. https://doi.org/10.1016/j.engstruct.2018.07.086.   DOI
41 Zhang, Y.T., Shan, B. and Xiao, Y. (2019), "Axial impact behaviors of stub concrete-filled square steel tubes", Adv. Struct. Eng., 22(11), 2490-2503. https://doi.org/10.1177/1369433219845094.   DOI