Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.08.705

Effects of Specimen Thickness and Notch Shape on Fracture Mode Appearing in Drop Weight Tear Test (DWTT) Specimens of API X70 and X80 Linepipe Steels  

Hong, Seokmin (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Shin, Sang Yong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Kim, Nack J. (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology)
Publication Information
Korean Journal of Metals and Materials / v.48, no.8, 2010 , pp. 705-716 More about this Journal
Abstract
Effects of specimen thickness and notch shape on fracture mode appearing in drop weight tear test (DWTT) specimens of API X70 and X80 linepipe steels were investigated. Detailed microstructural analysis of fractured DWTT specimens showed that the fractures were initiated in normal cleavage mode near the specimen notch, and that some separations were observed at the center of the fracture surfaces. The Chevron-notch (CN) DWTT specimens had broader normal cleavage surfaces than the pressed-notch (PN) DWTT specimens. Larger inverse fracture surfaces appeared in the PN DWTT specimens because of the higher fracture initiation energy at the notch and the higher strain hardening in the hammer-impacted region. The number and length of separations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency to separations increased, but separations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results, such as upper shelf energy and energy transition temperature, were discussed in relation with microstructures and fracture modes including cleavage fracture, shear fracture, inverse fracture, and separations.
Keywords
DWTT; metals; rolling; mechanical properties; impact test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. of The Thirteenth Intern. Offshore and Polar Engineering Conf., p.10, Honolulu, Hawaii, USA (2003).
2 R. Denys, Pipeline Technology, Vol. I & II, Elsevier, Amsterdam (2000).
3 D. P. Fairchild, M. L. Macia, S. D. Papka, C. W. Petersen, J. H. Stevens, S. T. Barbas, N. V. Bangaru, J. Y. Koo, and M. J. Luton, in Proc. Intern. Pipe Dreamer's Conf., p.307, Scientific Surveys Ltd., Yokohama, Japan (2002).
4 K. T. Corbett, R. R. Bowen, and C. W. Petersen, Intern. J. of Offshore and Polar Engineering 14, 75 (2004).
5 G. Mannucci, and D. Harris, Fracture Properties of API X100 Gas Pipeline Steels, European Commission, Final Report (2002).
6 P. E. O'Donoghue, M. F. Kanninen, C. P. Leung, G. Demofonti, and S. Venzi, Intern. J. Pres. Ves. & Piping 70, 11 (1997).   DOI   ScienceOn
7 API Recommended Practice 5L3, American Petroleum Institute (1996).
8 ASTM Standard E436-03, Standard Test Methods for Drop-Weight Tear Tests of Ferritic Steels, ASTM, (2008).
9 D. J. Horsley, Eng. Fract. Mech. 70, 547 (2003).   DOI   ScienceOn
10 D. W. Suh, C. S. Oh, and S. J. Kim, Met. Mater. Int. 14, 175 (2008).
11 G. M. Wilkowski, W. A. Maxey, and R. J. Eiber, Can. Metall. Q. 19, 59 (1980).   DOI
12 N. Nozaki, K. Bessyo, Y. Sumitomo, I. Takeuchi, and A. Yamashita, The Sumitomo Search. 26, 76 (1981).
13 I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermo-mechanical Processing of High-strength Low-alloy Steels, Butterworth & Co., Ltd. (1988).
14 M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A 34, 2505 (2003).   DOI   ScienceOn
15 T. Araki, Atlas for Bainitic Microstructures, 1, ISIJ, Tokyo, Japan (1992).
16 G. Baldi and G. Buzzichell, Met. Sci. 12, 459 (1978).   DOI   ScienceOn
17 G. Krauss and S. W. Thompson, ISIJ Intern. 35, 937 (1995).   DOI   ScienceOn
18 S. Y. Shin, B. Hwang, S. Lee, and K. B. Kang, Metal. Mater. Trans. A 38, 537 (2007).   DOI   ScienceOn
19 J. F. Knott, Fundamentals of Fracture Mechanics, John Wiley & Sons, New York, NY, Chapter 5, (1973).
20 B. Hwang, Y. G. Kim, S. Lee, N. J. Kim, and J. Y. Yoo, Metall. Mater. Trans. A 36, 371 (2005).   DOI   ScienceOn
21 J. W. Park, J. S. Kim, and I. G. Moon, J. Kor. Inst. Met. & Mater. 22, 5 (1984).
22 S. Y. Shin, S. Hong, J. Bae, K. Kim, and S. Lee, Metall. Mater. Trans. A 40, 2333 (2009).   DOI   ScienceOn
23 B.-W. Choi, D.-H. Seo, and J.-I. Jang, Met. Mater. Int. 15, 373 (2009).   DOI   ScienceOn