• 제목/요약/키워드: drop weight impact test

검색결과 84건 처리시간 0.022초

탄소섬유복합평판에 낙추충격을 가할 때 적층구성에 미치는 영향에 관한 연구 (A Study on the Influence of Stacking Sequences using CFRP Laminate Plates by Falling Weight Impact)

  • 임광희;박노식;양인영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.106-109
    • /
    • 2000
  • Impact tester was build up to evaluate the characterization of CFRP laminate plates under the low velocity impact. The tests were conducted on several laminates of different ply orientation A system was budded for the impact strength of CFRP laminates in consideration of stress wave propagation theory using drop-weight impact tester as one of impact test. Results indicate that absorbed energy of quasi-isotropic specimen having four interfaces is higher than that of orthotropic laminates with two interfaces. Also the damage area was measured with ultrasonic C-scanner on some samples. In the specimens the relationship was linear between damaged area and absorbed energy to some degree. Absorbed energy in the specimen that ply number, interface number and fiber stacking sequences is same but having hybrid is higher than that of orthotropic laminates without hybrid.

  • PDF

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

고낙하추 충격시험기를 이용한 스티칭된 샌드위치 복합재의 저에너지 충격거동 연구 (Impact Behaviors of Stitched Sandwich Composites Under Low Energy Impact Using Drop Weight Impact Tester)

  • 윤성호;이상진;조세현
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.54-64
    • /
    • 1999
  • 본 연구에서는 낙하추 방식의 충격시험기를 이용하여 스티칭된 샌드위치 복합재의 저에너지 충격거동을 조사하였다. 스티칭된 샌드위치 복합재는 유리섬유직물의 면재와 우레탄 폼의 코아로 구성되어 있으며 위쪽 면재와 아래쪽 면재는 폴리에스터 보강섬유로 코아의 두께방향을 따라 스티칭하여 일체형으로 결합되어 있다. 이때 코아의 두께가 충격거동에 미치는 영향을 조사하기 위해 코아의 두께를 달리한 네 종류의 스티칭된 샌드위치 복합재를 고려하였다. 스티칭된 샌드위치 복합재에 작용되는 충격조건은 낙하추의 질량과 낙하추의 낙하높이를 조절함으로써 변화시켰다. 연구결과에 따르면 코아의 두께, 낙하추의 낙하높이, 그리고 낙하추의 질량 등의 변화는 스티칭된 샌드위치 복합재에서의 충격하중, 충격체와의 접촉시간, 면재에 형성된 변형율 등에 영향을 미침을 알 수 있었다. 또한 스티칭된 샌드위치 복합재는 스티칭부의 보강효과로 인해 손상을 억제시킬 분 아니라 손상이 발생한 경우에도 구조물로서 역할을 담당할 수 있다. 그러나 스티칭된 샌드위치 복합재를 효율적으로 기존의 구조물에 적용하기 위해서는 스티칭부에서의 수지함침성을 개선할 수 있는 제작공법의 연구가 필요하다.

  • PDF

Investigating the deflection of GLARE and CARALL laminates under low-velocity impact test, experimentally and FEM simulation

  • Meisam Mohammadi;Mohammad Javad Ramezani
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.395-403
    • /
    • 2023
  • The main objective of this article is to investigate the response of different fiber metal laminates subjected to low velocity impact experimentally and numerically via finite element method (FEM). Hence, two different fiber metal laminate (FML) samples (GLARE/CARALL) are made of 7075-T6 aluminum sheets and polymeric composites reinforced by E-glass/carbon fibers. In order to study the responses to the low velocity impacts, samples are tested by drop weight machine. The projectiles are released from 1- and 1.5-meters height were the speed reaches to 4.42 and5.42 meter per second and the impact energies are measured as 6.7 and 10 Joules. In addition to experimental study, finite element simulation is done and results are compared. Finally, a detailed study on the maximum deflection, delamination and damages in laminates and geometry's effect of projectiles on the laminate response is done. Results show that maximum deflection caused by spherical projectile for GLARE samples is more apparent in comparison with the CARALL samples. Moreover, the maximum deflection of GLARE samples subjected to spherical projectile with 6.7 Joules impact energy, 127% increases in comparison with the CARALL samples in spite of different total thickness.

재료동특성에 기초한 방사성물질 운반용기 충격완충체의 치수최적설계 (Size Optimization of Impact Limiter in Radioactive Material Transportation Package Based on Material Dynamic Characteristics)

  • 최우석;남경오;서기석
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.20-28
    • /
    • 2008
  • According to IAEA regulations, a transportation package of radioactive material should perform its intended function of containing the radioactive contents after the drop test, which is one of hypothetical accident conditions. Impact limiters attached to a transport cask absorb the most of impact energy. So, it is appreciated to determine properly the shape, size and material of impact limiters. A material data needed in this determination is a dynamic one. In this study, several materials considered as those of impact limiters were tested by a drop weight facility to acquire dynamic material characteristics data. Impact absorbing volume of the impact limiter was derived mathematically for each drop condition. A size optimization of impact limiter was conducted. The derived impact absorbing volumes were applied as constraints. These volumes should be less than critical volumes generated based on the dynamic material characteristics. The derived procedure to decide the shape of impact limiter can be useful at the preliminary design stage when the transportation package's outline is roughly determined and applied as input value.

  • PDF

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

계장화에 의한 고분자 재료의 낙하추식 충격시험 (Instrumented Drop Weight Impact Testing of Polymer Materials)

  • 장경영;김갑용;최만용
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.3-12
    • /
    • 1998
  • Polymer materials have been used offensively as construction materials for automobiles, ships, and airplanes in recent years, and their impact resistance has been obliged to be examined. In the present study, a dropped load and a specimen, equipped with high responsible strain gauges respectively, were dropped and then the changes of load and absorption energy with time were observed. It was found that the waveforms for dropped weight coincided with output signal wave for specimen during the destruction test. Based on this experimental result, three disc type of specimens with different compositions were prepared and examined. This instrumented impact test method showed that each specimen can be distinguished from each other better than conventional tests and is expected to contribute to assess test results of impact resistance for some materials under development.

  • PDF

항공기 복합재료 적용 시편의 압축 강도 연구 (A Study on Compressive Strength of Aircraft Composite Specimens)

  • 공창덕;박현범;김상훈;이하승
    • 항공우주시스템공학회지
    • /
    • 제3권1호
    • /
    • pp.12-16
    • /
    • 2009
  • The laminated sequence and thickness of a composite structure is an important design parameter which affect the strength and impact damage. In this study, it was investigated the residual strength of carbon fiber laminate after impact damage by the experimental investigation. The tensile strength test and compressive strength test were used to find the mechanical properties, previously. Impact test was performed using low-velocity drop-weight test equipment. The impact damages were finally assessed by the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the impact damage.

  • PDF

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.