• Title/Summary/Keyword: drone control

Search Result 296, Processing Time 0.027 seconds

Development of Fuzzy controller for battery cell balancing of agricultural drones (농업용 드론의 배터리 셀 밸런싱을 위한 퍼지제어기 개발)

  • Lee, Sang-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.199-208
    • /
    • 2017
  • Lithium polymer batteries are used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle, and now they are used in agricultural drones. However, when overcharging and overdischarging, the lithium-polymer battery is destroyed in the gap structure in the lithium-ion battery and the battery life is reduced. In order to prevent overcharge and overdischarge, uneven cell voltage Cell balancing system is needed. In this paper, a fuzzy controller suitable for nonlinear systems is proposed by detecting the unbalanced cells by detecting the voltage difference between charging and discharging of each cell, and suggesting the applied cell balancing algorithm. In this paper, we have designed the cell balancing of the battery pack of agricultural drones by fuzzy control and it is designed for equal control between cells. As a final result, we checked whether cell balancing is good, and when there are two cells, Cell balancing was confirmed. We tested whether it could be used for other products. As a result, we confirmed that cell balancing is good regardless of the number of cells used.

IT Convergence UAV Swarm Control for Aerial Advertising (공중 광고를 위한 IT 융합 무인항공기 군집 제어)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • As the price of small UAVs is getting cheaper and its controllability is getting greatly increased, many aerial applications using both fixed-wing and hoverable UAVs have appeared in recent years. In this paper, a new aerial advertising method is proposed using four hoverable UAVs. Using the UAV swarm control method, four UAVs are maneuvered to carry a $7.07{\times}7.07m^2$ square banner along collision-free and predefined waypoints for aerial advertising. According to simulation results, it takes about 270 s for UAVs to perform aerial advertising in $669{\times}669m^2$ size area and the minimum distance among UAVs turns out to be 0.45 m which proves there is no any collision. Due to abrupt direction changes of UAVs along the predefined waypoints, UAVs cannot always maintain exact square formation and it results the maximum and minimum side lengths of square formation to be 10.35 m and 1.96 m, respectively. Also, the maximum and minimum diagonal lengths of square formation turn out to be 14.75 m and 2.78 m, respectively.

A Study on the Development of the Active Radar Reflector with Enhanced Function (개선된 기능을 갖는 능동 레이더 반사기 개발에 관한 연구)

  • 정종혁;강상욱;조영창;최병진;윤정오;오주환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.38-43
    • /
    • 2000
  • Active radar reflector may be less familiar, since their uses have been limited to military applications, especially the enhancement of the effective radar cross-sections of missile test range in the drone aircraft and missiles. Perhaps the most widely-Down applications of radar transponders are Identification Friend or Foe(IFF) and its civilian counterpart secondary surveilliance radar for Air Traffic Control(ATC), and most recently, as Search And Rescue Transponder(SART) in the Global Maritime Distress and Safety System(GMDSS). Since it happens frequently accidents on the sea, the problems of the contamination more seriously considered. The conventional navigation buoy and utilities are not sufficient to maintain the safety of the sea and thus new structured concept must be considered. Therefore, this paper propose and implement the active radar reflector with a enhanced function. The results are shown that the performance of the system is significantly improved comparing with the conventional utilities.

  • PDF

3D Positioning Using a UAV Equipped with a Stereo Camera (스테레오 카메라를 탑재한 UAV를 이용한 3차원 위치결정)

  • Park, Sung-Geun;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • Researches using UAVs are being actively conducted in the field of quickly constructing 3D spatial information in small areas. In this study, without using ground control points, a stereo camera was mounted on a UAV to collect images and quickly construct three-dimensional positions through image matching, bundle adjustment, and the determination of a scale factor. Through the experiment, when bundle adjustment was performed using stereo constraints, the root mean square error was 1.475m, and when absolute orientation was performed in consideration of a scale, it was found to be 0.029m. Through this, it was found that when using the data processing method of a UAV equipped with a stereo camera proposed in this study, high-accuracy 3D spatial information can be constructed without using ground control points.

The system for UAV to approach to a ship and to monitor via AIS information (AIS 정보를 활용한 UAV의 효율적인 선박 접근 및 모니터링을 위한 시스템)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1124-1129
    • /
    • 2021
  • The application area based on UAV (Unmanned Aerial Vehicle) is continuously increasing as time passing by. In particular the UAVs which consist of more than four horizontal propellers and the functionality of VTOL (Vertical Take-Off and Landing) are utilized in diverse platforms and the application products due to their safety and aerodynamically simpler design and architectures. The most UAV missions are controlled by GCSs (Ground Control System). The GCSs are generally connected to the internet and get electrical map and environmental information such as temperature, humidity, wind speed, wind direction and so on. In this paper, we design a system for UAV system to have capability of approaching to a certain ship and monitoring her efficiently by using AIS (Auto Identification System) information. Furthermore we verify that adapting AIS on GCS side is more efficient through experiments.

A Study on the Feasibility of Geomagnetic Declination Investigation at Unified Control Points in South Korea (국내 통합기준점에서 지자기 편각 조사의 타당성 연구)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.29-38
    • /
    • 2016
  • As publicizing of electromagnetic devices such as smart_phone and drone etc. which are relate with geomagnetic direction, and recognition about the importance to space weather effect and their hazards rises up recently, it is required heavily that the study on the effective measurement of geomagnetic declination and geomagnetic field effects of space weather. The purpose of this study is that the investigation of the feasibility of the absolute geomagnetic measurement in a place, where man-made geomagnetic contamination is low or negligible, with replacing the azimuth marks used for the absolute geomagnetic declination measurement with unified control points(UCP) which established at suburb. Further to this, have first derived the correlation of daily variations and disturbance level between the published indices($K_P$ and $K_K$) and geomagnetic element calculated from geomagnetic data of Cheongyang observatory located at the middle stage in Korea and is a member of INTERMAGNET. In addition, have carried out that the absolute measurement for the geomagnetic declination at three places near unified control point and one place with wide open field in Korea. The world magnetic models(WMMs) are selected as the criteria for comparison on the feasibility of geomagnetic declination investigation near unified control points. We compared deviations of declination from absolute measurement with that obtained from WMMs, also those from WMMs inter-comparison. The result through examination and analysis show that the feasibility of the absolute geomagnetic declination measurement with replacing the azimuth marks with UCP which established at suburb is possible.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.

Underground Facility Survey and 3D Visualization Using Drones (드론을 활용한 지하시설물측량 및 3D 시각화)

  • Kim, Min Su;An, Hyo Won;Choi, Jae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In order to conduct rapid, accurate and safe surveying at the excavation site, In this study, the possibility of underground facility survey using drones and the expected effect of 3D visualization were obtained as follows. Phantom4Pro 20MP drones have a 30m flight altitude and a redundant 85% flight plan, securing a GSD (Ground Sampling Distance) value of 0.85mm and 4points of GCP (Groud Control Point)and 2points of check point were calculated, and 7.3mm of ground control point and 11mm of check point were obtained. The importance of GCP was confirmed when measured with low-cost drones. If there is no ground reference point, the error range of X value is derived from -81.2 cm to +90.0 cm, and the error range of Y value is +6.8 cm to 155.9 cm. This study classifies point cloud data using the Pix4D program. I'm sorting underground facility data and road pavement data, and visualized 3D data of road and underground facilities of actual model through overlapping process. Overlaid point cloud data can be used to check the location and depth of the place you want through the Open Source program CloudCompare. This study will become a new paradigm of underground facility surveying.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

Accuracy Analysis According to the Number of GCP Matching (지상기준점 정합수에 따른 정확도 분석)

  • LEE, Seung-Ung;MUN, Du-Yeoul;SEONG, Woo-Kyung;KIM, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.127-137
    • /
    • 2018
  • Recently, UAVs and Drones have been used for various applications. In particular, in the field of surveying, there are studies on the technology for monitoring the terrain based on the high resolution image data obtained by using the UAV-equipped digital camera or various sensors, or for generating high resolution orthoimage, DSM, and DEM. In this study, we analyzed the accuracy of GCP(Ground control point) matching using UAV and VRS-GPS. First, we used VRS-GPS to pre-empt the ground reference point, and then imaged at a base altitude of 150m using UAV. To obtain DSM and orthographic images of 646 images, RMSE was analyzed using pix4d mapper version As a result, even if the number of GCP matches is more than five, the error range of the national basic map(scale : 1/5,000) production work regulations is observed, and it is judged that the digital map revision and gauging work can be utilized sufficiently.