• 제목/요약/키워드: driving time

검색결과 2,390건 처리시간 0.03초

실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발 (Development of Vehicle Environment for Real-time Driving Behavior Monitoring System)

  • 김만호;손준우;이용태;신승헌
    • 대한인간공학회지
    • /
    • 제29권1호
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

병렬구조형 차량운전 모사장치의 성능평가 및 분석 (Analysis and performance evaluation of the parallel typed for a vehicle driving simulator)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

적응 순항 제어기 성능 평가를 위한 실시간 차량 시뮬레이터 개발 (Development of a Real-time Driving Simulator for ACC(Adaptive-Cruise-Control) Performance Evaluation)

  • 한동훈;이경수
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.28-34
    • /
    • 2006
  • An ACC driving simulator is a virtual reality device which designed to test or evaluate vehicle control algorithm. It is designed and built based on the rapid control prototyping(RCP) concept. Therefore this simulator adopt RCP tools to solve the equation of a vehicle dynamics model and control algorithm in real time, rendering engine to provide real-time visual representation of vehicle behavior and CAN communication to reduce networking load. It can provide also many different driving test environment and driving scenarios.

자율주행을 위한 라이다 기반의 실시간 그라운드 세그멘테이션 알고리즘 (LiDAR based Real-time Ground Segmentation Algorithm for Autonomous Driving)

  • 이아영;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.51-56
    • /
    • 2022
  • This paper presents an Ground Segmentation algorithm to eliminate unnecessary Lidar Point Cloud Data (PCD) in an autonomous driving system. We consider Random Sample Consensus (Ransac) Algorithm to process lidar ground data. Ransac designates inlier and outlier to erase ground point cloud and classified PCD into two parts. Test results show removal of PCD from ground area by distinguishing inlier and outlier. The paper validates ground rejection algorithm in real time calculating the number of objects recognized by ground data compared to lidar raw data and ground segmented data based on the z-axis. Ground Segmentation is simulated by Robot Operating System (ROS) and an analysis of autonomous driving data is constructed by Matlab. The proposed algorithm can enhance performance of autonomous driving as misrecognizing circumstances are reduced.

주행특성지수를 이용한 차량 주행상태 판별 (Determination of Driving States using the Driving Characteristics Index)

  • 주다니;문상찬;이순걸
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.210-216
    • /
    • 2015
  • This paper proposes a method to determine vehicle driving state using the driving characteristics index. This index is a quantitative value to classify the driving state of a vehicle with its velocity and heading angle in that instant. It can classify driving state into straight driving, lane changing driving and curve driving in real time. In addition, the number of positional information is movably set up by designed region of interest. The proposed index is expressed on the stable driving states. Each driving state has characteristic tendency, and is compared with index distributional areas. The proposed method is verified by the actual driving experiment on the KATECH proving ground.

격벽형 전자종이의 하전입자 필터링 방법 및 구동조건에 따른 응답시간 및 반사율 분석 (Analysis of Response Time and Reflectivity According to Driving Conditions of Barrier Rib-Type E-Paper Fabricated by Charged Particle Filtering Method)

  • 이주원;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.475-482
    • /
    • 2020
  • For electronic paper displays using electrophoresis, the response time and reflectivity of the image panel fabricated by filtering are analyzed. For the filtering process, a square wave and ramp wave are applied to white charged particles with a unique q/m value. We divide the sample panels into #1 to #4 according to the applied waveform in the filtering process. Step waves comprising two steps are used to drive the panel; therefore, we divide the driving conditions into D1~D4. The applied voltage at the first stage of the half cycle of the driving waveform moves the charged particles attached via the image force from the electrode, and the applied voltage at the second stage moves the floating charged particles by detaching. As mentioned, four types of driving conditions (D1 to D4) classified according to the half cycle of the driving waveform are applied to the samples #1 to #4), which are classified according to four types of filtering process. When driving condition D1 is applied to the four types of sample panels, the rise time of #1 is 1.59s, #2 is 1.706s, #3 is 1.853s, and #4 is 1.235s, resulting in #4 being relatively faster compared with other sample panels, and showing the same trend in other driving conditions. As a result, we confirm that applying the driving condition D1 causes abrupt movement of the white charged particles injected into the cell. When the same driving waveform (D1) is applied to each sample, reflectivities of 32.1% for #1, 31.4% for #2, 27.9% for #3, and 63.4% for #4 are measured. From the experiment, we confirm that the driving condition D1 (1s of 3.5 V, 9s of 3.0 V) and ramp wave #4 in filtering are desirable for good reflectivity and response time. Our research is expected to contribute to the improvement of the filtering process and optimization of the driving waveform.

Fast Response Driving of TFT LCD for Motion Picture

  • Choi, Yu-Jin;Mo, Soon-Hee;Bae, Young-Min;Lim, Young-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.449-451
    • /
    • 2002
  • We reported the algorithm of driving scheme that enhances moving picture property by improving gray-to-gray response time. Here, we report result of simulation for estimation of driving voltage to reduce response time, and experimental result. We investigated optimization of algorithm so that minimum size of LUT can support to reducing the gray-to-gray response time within 1 frame period, and with single algorithm it is possible to apply the algorithm to various kinds of LC material. So in our system there is no external EEPROM.

  • PDF

유전 알고리즘을 이용한 최적경로 탐색

  • 김경남;조민석;이현경
    • 한국CDE학회지
    • /
    • 제21권2호
    • /
    • pp.34-38
    • /
    • 2015
  • In case of the big city, choosing the adequate root of which we can reach the destination can affect the driver's condition and driving time. so it is quite important to find the optimal routes for arriving the destination as considering the factors, such as driving conditions or travel time and so on. In this paper, we develop route choice model with considering driving conditions and travel time, and it can search the optimal path which make drivers reduce their fatigues using genetic algorithm.

  • PDF

제한 주행시간을 만족하는 에너지 효율적인 전기자동차 주행 최적화 기법 (Energy Efficient Electric Vehicle Driving Optimization Method Satisfying Driving Time Constraint)

  • 백돈규
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.39-47
    • /
    • 2020
  • 본 논문은 추가 비용 없이 전기자동차(EV) 주행 범위를 확장하기 위해 에너지 효율적인 전기자동차 주행 프로파일을 도출하는 새로운 시스템 수준의 프레임 워크를 소개한다. 이 논문은 먼저 운전 차량에 작용하는 힘과 모터 효율을 고려한 전기차 파워 트레인 모델을 구현한 후, 경로에 의해 정의된 주행 임무에 대한 최소 에너지 주행 프로파일을 도출한다. 이를 위해서 본 프레임워크는 먼저 최적화 문제를 공식화하고, 가중치 계수를 이용한 동적 프로그래밍 알고리즘을 사용하여 에너지 소비와 운전 시간을 모두 최소화하는 주행 프로파일을 도출한다. 본 논문은 주행 시간 제약을 만족시키기 위한 다양한 가중치 계수 도출 방법을 소개한다. 시뮬레이션 결과, 제안 된 스케일링 알고리즘의 연산시간이 이진 검색 알고리즘 및 탐욕 알고리즘보다 각각 34 % 및 50 % 더 작음을 보여준다.

자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발 (Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle)

  • 이혜원;송태준;윤영민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.