DOI QR코드

DOI QR Code

Analysis of Response Time and Reflectivity According to Driving Conditions of Barrier Rib-Type E-Paper Fabricated by Charged Particle Filtering Method

격벽형 전자종이의 하전입자 필터링 방법 및 구동조건에 따른 응답시간 및 반사율 분석

  • Lee, Joo-Won (Department of Electronic Engineering, Chungwoon University) ;
  • Kim, Young-Cho (Department of Electronic Engineering, Chungwoon University)
  • Received : 2020.08.06
  • Accepted : 2020.09.09
  • Published : 2020.11.01

Abstract

For electronic paper displays using electrophoresis, the response time and reflectivity of the image panel fabricated by filtering are analyzed. For the filtering process, a square wave and ramp wave are applied to white charged particles with a unique q/m value. We divide the sample panels into #1 to #4 according to the applied waveform in the filtering process. Step waves comprising two steps are used to drive the panel; therefore, we divide the driving conditions into D1~D4. The applied voltage at the first stage of the half cycle of the driving waveform moves the charged particles attached via the image force from the electrode, and the applied voltage at the second stage moves the floating charged particles by detaching. As mentioned, four types of driving conditions (D1 to D4) classified according to the half cycle of the driving waveform are applied to the samples #1 to #4), which are classified according to four types of filtering process. When driving condition D1 is applied to the four types of sample panels, the rise time of #1 is 1.59s, #2 is 1.706s, #3 is 1.853s, and #4 is 1.235s, resulting in #4 being relatively faster compared with other sample panels, and showing the same trend in other driving conditions. As a result, we confirm that applying the driving condition D1 causes abrupt movement of the white charged particles injected into the cell. When the same driving waveform (D1) is applied to each sample, reflectivities of 32.1% for #1, 31.4% for #2, 27.9% for #3, and 63.4% for #4 are measured. From the experiment, we confirm that the driving condition D1 (1s of 3.5 V, 9s of 3.0 V) and ramp wave #4 in filtering are desirable for good reflectivity and response time. Our research is expected to contribute to the improvement of the filtering process and optimization of the driving waveform.

Keywords

References

  1. W. C. Kao, C. H. Liu, S. C. Liou, J. C. Tsai, and G. H. Hou, J. Disp. Technol., 12, 129 (2016). [DOI: https://doi.org/10.1109/jdt.2015.2469539]
  2. M. G. Pitt, R. W. Zehner, K. R. Amudson, and H. Gates, J. Soc. Inf. Disp., 33, 1378 (2012). [DOI: https://doi.org/10.1889/1.1830204]
  3. T. Bert and H. D. Smet, Displays, 24, 223 (2003). [DOI: https://doi.org/10.1016/j.displa.2004.01.009]
  4. G. X. Li, S. C. Qin, Y. Q. Feng, S. Fang, and S. X. Meng, J. Disp. Technol., 12, 1145 (2016). [DOI: https://doi.org/10.1109/jdt.2016.2560519]
  5. C. M. Lu and C. L. Wey, J. Disp. Technol., 7, 434 (2011). [DOI: https://doi.org/10.1109/JDT.2011.2142173]
  6. J. S. Song and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 518 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.8.518]
  7. B. R. Yang, Y. C. Wang, and L. Wang, Proc. Advances in Display Technologies VII (SPIE OPTO, San Francisco, USA, 2017) p. 1012602. [DOI: https://doi.org/10.1117/12.2249474]
  8. C. M. Chang, C. H. Chiu, and Y. Z. Lee, J. Soc. Inf. Disp., 42, 1545 (2012). [DOI: https://doi.org/10.1889/1.3621156]
  9. Z. C. Yi, P. F. Bai, L. Wang, X. Zhang, and G. F. Zhou, J. Cent. South Univ., 21, 3133 (2014). [DOI: https://doi.org/10.1007/s11771-014-2285-9]
  10. L. Wang, G. S. Liu, Y. C. Wang, J. Su, X. D. Wang, X. Zeng, Z. S. Zhang, S. Z. Deng, H.P.D. Shieh, and B. R. Yang, J. Soc. Inf. Disp., 25, 384 (2017). [DOI: https://doi.org/10.1002/jsid.562]
  11. K.M.H. Lenssen, P. J. Baesjou, F.P.M. Budzelaar, M.H.W.M. van Delden, S. J. Roosendaal, L.W.G. Stofmeel, A.R.M. Verschueren, J. J. van Glabbeek, J.T.M. Osenga, and R. M. Schuurbiers, J. Soc. Inf. Disp., 17, 383 (2012). [DOI: https://doi.org/10.1889/JSID17.4.383]
  12. W. C. Kao, W. T. Chang, and J. A. Ye, J. Disp. Technol., 8, 596 (2012). [DOI: https://doi.org/10.1109/jdt.2012.2205896]
  13. S. I. Lee, Y. C. Hong, and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 171 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.3.171]
  14. T. Bert, H. D. Smet, F. Beunis, and K. Neyts, Displays, 27, 50 (2006). [DOI: https://doi.org/10.1016/j.displa.2005.10.001]
  15. F. Duan, P. Bai, A. Henzen, and G. Zhou, Proc. 2016 IEEE International Conference on Signal and Image Processing (ICSIP) (IEEE, Beijing, China, 2016) p. 498. [DOI: https://doi.org/10.1109/SIPROCESS.2016.7888312]
  16. I. H. Kim and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 93 (2009). [DOI: https://doi.org/10.4313/jkem.2009.22.1.093]
  17. M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, J. Soc. Inf. Disp., 14, 175 (2012). [DOI: https://doi.org/10.1889/1.2176120]
  18. X. Meng, L. Qiang, J. Wei, and H. Shi, J. Nanosci. Nanotechnol., 14, 1617 (2014). [DOI: https://doi.org/10.1166/jnn.2014.9136]
  19. H. J. An and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 31 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.1.31]
  20. J. W. Lee and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 386 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.5.386]