DOI QR코드

DOI QR Code

Energy Efficient Electric Vehicle Driving Optimization Method Satisfying Driving Time Constraint

제한 주행시간을 만족하는 에너지 효율적인 전기자동차 주행 최적화 기법

  • 백돈규 (충북대학교 전자공학부)
  • Received : 2020.03.19
  • Accepted : 2020.04.12
  • Published : 2020.04.30

Abstract

This paper introduces a novel system-level framework that derives energy efficient electric vehicle (EV) driving speed profile to extend EV driving range without additional cost. This paper first implements an EV power train model considering forces acting on a driving vehicle and motor efficiency. Then, it derivate the minimum-energy driving speed profile for a given driving mission defined by the route. This framework first formulates an optimization problem and uses the dynamic programming algorithm with a weighting factor to derive a speed profile minimizing both of energy consumption and driving time. This paper introduces various weighting factor tracking methods to satisfy the driving time constraint. Simulation results show that runtime of the proposed scaling algorithm is 34% and 50% smaller than those of the binary search algorithm and greedy algorithm, respectively.

본 논문은 추가 비용 없이 전기자동차(EV) 주행 범위를 확장하기 위해 에너지 효율적인 전기자동차 주행 프로파일을 도출하는 새로운 시스템 수준의 프레임 워크를 소개한다. 이 논문은 먼저 운전 차량에 작용하는 힘과 모터 효율을 고려한 전기차 파워 트레인 모델을 구현한 후, 경로에 의해 정의된 주행 임무에 대한 최소 에너지 주행 프로파일을 도출한다. 이를 위해서 본 프레임워크는 먼저 최적화 문제를 공식화하고, 가중치 계수를 이용한 동적 프로그래밍 알고리즘을 사용하여 에너지 소비와 운전 시간을 모두 최소화하는 주행 프로파일을 도출한다. 본 논문은 주행 시간 제약을 만족시키기 위한 다양한 가중치 계수 도출 방법을 소개한다. 시뮬레이션 결과, 제안 된 스케일링 알고리즘의 연산시간이 이진 검색 알고리즘 및 탐욕 알고리즘보다 각각 34 % 및 50 % 더 작음을 보여준다.

Keywords

References

  1. Baek, D., and Chang, N. (2019). Runtime Power Management of Battery Electric Vehicles for Extended Range With Consideration of Driving Time, Transactions on Very Large Scale Integration Systems, 27(3), 549-559. https://doi.org/10.1109/TVLSI.2018.2880441
  2. Chen, Y., Baek, D., Kim, J., Cataldo, S., Chang, N., Macii, E., Vinco, S., and Poncino M. (2019). A SystemC-AMS Framework for the Design and Simulation of Energy Management in Electric Vehicles, IEEE Access, 7, 25779-25791. https://doi.org/10.1109/access.2019.2900505
  3. Chang, N., Baek, D., and Hong, J. (2014). Power Consumption Characterization, Modeling and Estimation of Electric Vehicles, IEEE/ACM International Conference on Computer-Aided Design, Nov. 2-6, San Jose, USA.
  4. Dib, W., Chasse, A., Domenico, D., Moulin, P., and Sciarretta, A. (2012). Evaluation of the Energy Efficiency of a Fleet of Electric Vehicle for Eco-driving Application, Oil and Gas Science and Technology-Revue de IFP Energies Nouvelles, 67(4), 589-599. https://doi.org/10.2516/ogst/2012023
  5. Hayes, J., Oliveira, R., Vaughan, S., and Egan, M. (2011). Simplified Electric Vehicle Power Train Models and Range Estimation, Vehicle Power and Propulsion Conference, Sept. 6-9, Chicago, USA.
  6. Hong, J., Park, S., and Chang, N. (2016). Accurate Remaining Range Estimation for Electric Vehicles, Asia and South Pacific Design Automation Conference, Jan. 25-28, Macau, China.
  7. IHS Markit Release (2019). US Electric Vehicle Loyalty and Volumes Reach Record Highs, according to IHS Markit, https://www.businesswire.com/news/home/20190415005540/en/Electric-Vehicle-Loyalty-Volumes-Reach-Record-Highs (Accessed on Dec. 30th, 2019)
  8. Jiao, N., Ghaffarzadeh, K., and Jiang, L. (2019). Autonomous Cars and Robotaxis 2020-2040: Players, Technologies and Market Forecast, IDTechEX.
  9. Mensing, F., Bideaux, E., Trigui, R., and Tattegrain, H. (2013). Trajectory Optimization for Eco-driving taking into Account Traffic Constraints, Transportation Research Part D: Transport and Environment, 18, 55-61. https://doi.org/10.1016/j.trd.2012.10.003
  10. Ozatay, E., Onori, S., Wollaeger, J., Ozguner U., Rizzoni, G., Filev, D., Michelini, J., and Cairano, S. (2014). Cloud-based Velocity Profile Optimization for Everyday Driving: A Dynamic-programming-based Solution, Transactions on Intelligent Transportation Systems, 15(6), 2491-2505. https://doi.org/10.1109/TITS.2014.2319812
  11. Park, S., Rakha, H., Ahn, K., and Moran, K. (2011). Predictive Eco-cruise Control: Algorithm and Potential Benefits, Forum on Integrated and Sustainable Transportation Systems (FISTS) , June 29-July 1, Vienna, Austria.
  12. Rahimi-Eichi, H. and Chow, M. (2014). Big-data Framework for Electric Vehicle Range Estimation, IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Oct. 29-Nov. 1, Dallas, USA, pp. 5628-5634.
  13. Zahid, T., Xu, K., Li, W., Li, C., and Li, H. (2018). State of Charge Estimation for Electric Vehicle Power Battery using Advanced Machine Learning Algorithm under Diversified Drive Cycles, Energy, 162, 871-882. https://doi.org/10.1016/j.energy.2018.08.071