Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.6.475

Analysis of Response Time and Reflectivity According to Driving Conditions of Barrier Rib-Type E-Paper Fabricated by Charged Particle Filtering Method  

Lee, Joo-Won (Department of Electronic Engineering, Chungwoon University)
Kim, Young-Cho (Department of Electronic Engineering, Chungwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.6, 2020 , pp. 475-482 More about this Journal
Abstract
For electronic paper displays using electrophoresis, the response time and reflectivity of the image panel fabricated by filtering are analyzed. For the filtering process, a square wave and ramp wave are applied to white charged particles with a unique q/m value. We divide the sample panels into #1 to #4 according to the applied waveform in the filtering process. Step waves comprising two steps are used to drive the panel; therefore, we divide the driving conditions into D1~D4. The applied voltage at the first stage of the half cycle of the driving waveform moves the charged particles attached via the image force from the electrode, and the applied voltage at the second stage moves the floating charged particles by detaching. As mentioned, four types of driving conditions (D1 to D4) classified according to the half cycle of the driving waveform are applied to the samples #1 to #4), which are classified according to four types of filtering process. When driving condition D1 is applied to the four types of sample panels, the rise time of #1 is 1.59s, #2 is 1.706s, #3 is 1.853s, and #4 is 1.235s, resulting in #4 being relatively faster compared with other sample panels, and showing the same trend in other driving conditions. As a result, we confirm that applying the driving condition D1 causes abrupt movement of the white charged particles injected into the cell. When the same driving waveform (D1) is applied to each sample, reflectivities of 32.1% for #1, 31.4% for #2, 27.9% for #3, and 63.4% for #4 are measured. From the experiment, we confirm that the driving condition D1 (1s of 3.5 V, 9s of 3.0 V) and ramp wave #4 in filtering are desirable for good reflectivity and response time. Our research is expected to contribute to the improvement of the filtering process and optimization of the driving waveform.
Keywords
Charged particles; Reflectivity; Response time; Driving voltage; Barrier rib-type electronic paper;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 W. C. Kao, C. H. Liu, S. C. Liou, J. C. Tsai, and G. H. Hou, J. Disp. Technol., 12, 129 (2016). [DOI: https://doi.org/10.1109/jdt.2015.2469539]   DOI
2 M. G. Pitt, R. W. Zehner, K. R. Amudson, and H. Gates, J. Soc. Inf. Disp., 33, 1378 (2012). [DOI: https://doi.org/10.1889/1.1830204]
3 T. Bert and H. D. Smet, Displays, 24, 223 (2003). [DOI: https://doi.org/10.1016/j.displa.2004.01.009]   DOI
4 G. X. Li, S. C. Qin, Y. Q. Feng, S. Fang, and S. X. Meng, J. Disp. Technol., 12, 1145 (2016). [DOI: https://doi.org/10.1109/jdt.2016.2560519]   DOI
5 C. M. Lu and C. L. Wey, J. Disp. Technol., 7, 434 (2011). [DOI: https://doi.org/10.1109/JDT.2011.2142173]   DOI
6 J. S. Song and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 518 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.8.518]   DOI
7 B. R. Yang, Y. C. Wang, and L. Wang, Proc. Advances in Display Technologies VII (SPIE OPTO, San Francisco, USA, 2017) p. 1012602. [DOI: https://doi.org/10.1117/12.2249474]
8 C. M. Chang, C. H. Chiu, and Y. Z. Lee, J. Soc. Inf. Disp., 42, 1545 (2012). [DOI: https://doi.org/10.1889/1.3621156]
9 Z. C. Yi, P. F. Bai, L. Wang, X. Zhang, and G. F. Zhou, J. Cent. South Univ., 21, 3133 (2014). [DOI: https://doi.org/10.1007/s11771-014-2285-9]   DOI
10 L. Wang, G. S. Liu, Y. C. Wang, J. Su, X. D. Wang, X. Zeng, Z. S. Zhang, S. Z. Deng, H.P.D. Shieh, and B. R. Yang, J. Soc. Inf. Disp., 25, 384 (2017). [DOI: https://doi.org/10.1002/jsid.562]   DOI
11 K.M.H. Lenssen, P. J. Baesjou, F.P.M. Budzelaar, M.H.W.M. van Delden, S. J. Roosendaal, L.W.G. Stofmeel, A.R.M. Verschueren, J. J. van Glabbeek, J.T.M. Osenga, and R. M. Schuurbiers, J. Soc. Inf. Disp., 17, 383 (2012). [DOI: https://doi.org/10.1889/JSID17.4.383]   DOI
12 W. C. Kao, W. T. Chang, and J. A. Ye, J. Disp. Technol., 8, 596 (2012). [DOI: https://doi.org/10.1109/jdt.2012.2205896]   DOI
13 S. I. Lee, Y. C. Hong, and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 171 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.3.171]   DOI
14 T. Bert, H. D. Smet, F. Beunis, and K. Neyts, Displays, 27, 50 (2006). [DOI: https://doi.org/10.1016/j.displa.2005.10.001]   DOI
15 F. Duan, P. Bai, A. Henzen, and G. Zhou, Proc. 2016 IEEE International Conference on Signal and Image Processing (ICSIP) (IEEE, Beijing, China, 2016) p. 498. [DOI: https://doi.org/10.1109/SIPROCESS.2016.7888312]
16 I. H. Kim and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 93 (2009). [DOI: https://doi.org/10.4313/jkem.2009.22.1.093]   DOI
17 M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, J. Soc. Inf. Disp., 14, 175 (2012). [DOI: https://doi.org/10.1889/1.2176120]   DOI
18 X. Meng, L. Qiang, J. Wei, and H. Shi, J. Nanosci. Nanotechnol., 14, 1617 (2014). [DOI: https://doi.org/10.1166/jnn.2014.9136]   DOI
19 H. J. An and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 31 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.1.31]   DOI
20 J. W. Lee and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 386 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.5.386]   DOI