• Title/Summary/Keyword: driving time

Search Result 2,411, Processing Time 0.029 seconds

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

Safety Identification Lamp Visibility of Micro Cars (초소형전기차의 안전식별등 시인성에 관한 연구)

  • Baek, Seong Chae;Seo, Im Ki;Kim, Jeong Hyun;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.417-425
    • /
    • 2022
  • Interest in micro cars is growing around the world, and policy support for micro cars has been increasing in Korea. It is important to meet minimum safety standards for the operation of micro cars on roads due to concerns around micro car safety and the limited driving range of micro cars. In this study, visibility experiments that included safety identification of micro cars were conducted to try and prevent a decrease in driver reaction time. Safety identification lights were installed to the rear of a micro car, and the visibility and discomfort of the vehicle were evaluated to determine whether the micro car was safe to drive on an expressway. As a result, the installation effect of Micro car which install safety identification lamp was found when joining the point at an acceleration lane of the grade separation intersection, and that light on/off could be effective when entering an expressway. If the micro car operation plan proposed in this study is applied, the safety of micro cars on expressways can be increased by improving the visibility of micro car.

Liquid Crystal Driving of Transparent Electrode-Alignment Layer Multifunctional Thin Film by Nano-Wrinkle Imprinting of PEDOT:PSS/MWNT Nanocomposite (PEDOT:PSS/MWNT 나노복합체의 나노주름 임프린팅을 통한 투명전극-배향막 복합 기능 박막의 액정 구동)

  • Jong In Jang;Hae-Chang Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • In conventional liquid crystal display(LCD) manufacturing process, Indium Tin Oxide(ITO) as transparent electrode and rubbing process of polyimide as alignment layer are essential process to apply electric field and align liquid crystal molecules. However, there are some limits that deposition of ITO requires high vacuum state, and rubbing process might damage the device with tribolectric discharge. In this paper, we made nanocomposite with PEDOT:PSS and MWNT to replace ITO and constructed alignment layer by nano imprint lithography with nano wrinkle pattern, to replace rubbing process. These replacement made that only one PEDOT:PSS/MWNT film can function as two layers of ITO and polyimide alignment layer, which means simplification of process. Transferred nano wrinkle patterns functioned well as alignment layer, and we found out lowered threshold voltage and shortened response time as MWNT content increase, which is related to increment of electric conductivity of the film. Through this study, it may able to contribute to process simplification, reducing process cost, and suggesting a solution to disadvantage of rubbing process.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Lane Change Methodology for Autonomous Vehicles Based on Deep Reinforcement Learning (심층강화학습 기반 자율주행차량의 차로변경 방법론)

  • DaYoon Park;SangHoon Bae;Trinh Tuan Hung;Boogi Park;Bokyung Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.276-290
    • /
    • 2023
  • Several efforts in Korea are currently underway with the goal of commercializing autonomous vehicles. Hence, various studies are emerging on autonomous vehicles that drive safely and quickly according to operating guidelines. The current study examines the path search of an autonomous vehicle from a microscopic viewpoint and tries to prove the efficiency required by learning the lane change of an autonomous vehicle through Deep Q-Learning. A SUMO was used to achieve this purpose. The scenario was set to start with a random lane at the starting point and make a right turn through a lane change to the third lane at the destination. As a result of the study, the analysis was divided into simulation-based lane change and simulation-based lane change applied with Deep Q-Learning. The average traffic speed was improved by about 40% in the case of simulation with Deep Q-Learning applied, compared to the case without application, and the average waiting time was reduced by about 2 seconds and the average queue length by about 2.3 vehicles.

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 박막의 화학적 내구성 평가)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.362-367
    • /
    • 2023
  • Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.

A Study on the Frequency of Traffic Accidents by Traffic Signal Timing: Focused on Daejeon (『신호현시 표출 방법』에 따른 교통사고 발생빈도 분석 연구: 대전광역시 관내 중심으로)

  • So-sig Yoon;Min-ho Lee;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.20-37
    • /
    • 2023
  • Although traffic signal installations are continuously expanding, the effect of preventing traffic accidents remains unverified. Totally, 7,045 traffic accident data (such as signal violations) registered with TCS were manually searched for a 7-year period from 2013 to 2019 for 1,602 traffic signals in Daejeon Metropolitan City. The top 20 traffic accident intersections were identified, the traffic accident investigation records and field maps were viewed to compare the driving direction and signal phase of the violated vehicle, and the cause of the traffic accident was divided into insufficient signal operation design (operation) and driver negligence (intentional). Results of the analysis revealed that 75% of traffic accidents occurred in thru-left-turn traffic signals and overlap; moreover, extending the yellow time or operating all red signals due to countermeasures against traffic accidents occurring in yellow signals resulted in reduced traffic accidents. Data indicated that Permissive Left Turn requires improvement with the signal operation. In addition, since The Korean National Police Agency is not computerized for traffic accident sites and signal-related data, the lack of manpower necessitates improvement and utilization of TCS when establishing traffic accident prevention measures. It is believed that it will contribute to signal operation by analyzing vast amounts of data collected in the field and presenting improvement measures.

Analysis of the Effectiveness of Tunnel Traffic Safety Information Service Using RADAR Data Based on Surrogate Safety Measures (레이더 검지기 자료를 활용한 SSM 기반 터널 교통안전정보 제공 서비스 효과분석)

  • Yongju Kim;Jaehyeon Lee;Sungyong Chung;Chungwon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.73-87
    • /
    • 2023
  • Furnishing traffic safety information can contribute to providing hazard warnings to drivers, thereby avoiding crashes. A smart road lighting platform that instantly recognizes road conditions using various sensors and provides appropriate traffic safety information has therefore been developed. This study analyzes the short-term traffic safety improvement effects of the smart road lighting's tunnel traffic safety information service using surrogate safety measures (SSM). Individual driving behavior was investigated by applying the vehicle trajectory data collected with RADAR in the Anin Avalanche 1 and 2 tunnel sections in Gangneung. Comparing accumulated speeding, speed variation, time-to-collision, and deceleration rate to avoid the crash before and after providing traffic safety information, all SSMs showed significant improvement, indicating that the tunnel traffic safety information service is beneficial in improving traffic safety. Analyzing potential crash risk in the subdivided tunnel and access road sections revealed that providing traffic safety information reduced the probability of traffic accidents in most segments. The results of this study will be valuable for analyzing the short-term quantitative effects of traffic safety information services.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

The study of security management for application of blockchain technology in the Internet of Things environment (Focusing on security cases in autonomous vehicles including driving environment sensing data and occupant data) (사물인터넷 환경에서 블록체인 기술을 이용한 보안 관리에 관한 소고(주행 환경 센싱 데이터 및 탑승자 데이터를 포함한 자율주행차량에서의 보안 사례를 중심으로))

  • Jang Mook KANG
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.161-168
    • /
    • 2022
  • After the corona virus, as non-face-to-face services are activated, domain services that guarantee integrity by embedding sensing information of the Internet of Things (IoT) with block chain technology are expanding. For example, in areas such as safety and security using CCTV, a process is required to safely update firmware in real time and to confirm that there is no malicious intrusion. In the existing safe security processing procedures, in many cases, the person in charge performing official duties carried a USB device and directly updated the firmware. However, when private blockchain technology such as Hyperledger is used, the convenience and work efficiency of the Internet of Things environment can be expected to increase. This article describes scenarios in how to prevent vulnerabilities in the operating environment of various customers such as firmware updates and device changes in a non-face-to-face environment. In particular, we introduced the optimal blockchain technique for the Internet of Things (IoT), which is easily exposed to malicious security risks such as hacking and information leakage. In this article, we tried to present the necessity and implications of security management that guarantees integrity through operation applying block chain technology in the increasingly expanding Internet of Things environment. If this is used, it is expected to gain insight into how to apply the blockchain technique to guidelines for strengthening the security of the IoT environment in the future.