Gwak, Jeonghwan;Jung, Juho;Oh, RyumDuck;Park, Manbok;Rakhimov, Mukhammad Abdu Kayumbek;Ahn, Junho
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5299-5320
/
2019
Interest in self-driving vehicle research has been rapidly increasing, and related research has been continuously conducted. In such a fast-paced self-driving vehicle research area, the development of advanced technology for better convenience safety, and efficiency in road and transportation systems is expected. Here, we investigate research in self-driving vehicles and analyze the main technologies of driverless car software, including: technical aspects of autonomous vehicles, traffic infrastructure and its communications, research techniques with vision recognition, deep leaning algorithms, localization methods, existing problems, and future development directions. First, we introduce intelligent self-driving car and road infrastructure algorithms such as machine learning, image processing methods, and localizations. Second, we examine the intelligent technologies used in self-driving car projects, autonomous vehicles equipped with multiple sensors, and interactions with transport infrastructure. Finally, we highlight the future direction and challenges of self-driving vehicle transportation systems.
Using driving simulator, we analyzed the driving behavior of an older driver on intersection and measured the pychological load to HRV. As a results, older drivers started to enter the more complex intersection on a great distance and on low velocity for safety driving. On the other hand, the value of HRV would be lower on more complex intersections. It suggested that an older driver allowed for his own losses of physiological and cognitive function and recognized low level of driving confidence relatively.
Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.
Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.
최근 심층강화학습을 활용한 종단간 자율주행에 대한 관심이 크게 증가하고 있다. 본 논문에서는 차량의 종방향 주행 성능을 개선하는 잠재 SAC 기반 심층강화학습의 보상함수를 제시한다. 기존 강화학습 보상함수는 주행 안전성과 효율성이 크게 저하되는 반면 제시하는 보상함수는 전방 차량과의 충돌위험을 회피하면서 적절한 차간거리를 유지할 수 있음을 보인다.
Each ADS must have a validation and evaluation scenario for ODD. This requires a large number of scenarios, so a scenario library must be developed. In order to effectively utilize the scenario library, a system that supports testing in the ODD of the user's choice is required. In other words, in order to develop a scenario library, it is necessary to build a database on actual driving road conditions (geometry, etc.). Accordingly, in this study, we establish a domestic driving environment database based on HD-Map for driving safety testing, design a system that can search test target sections in connection with the ODD of the scenario, and present the implementation results. In the future, it is expected that the domestic driving environment database will be able to create scenarios through linking with the scenario library and directly utilize them for scenario-based evaluation of various demand sources.
AI 기술이 발전함에 따라 자율주행의 안전성에 관한 관심이 대두되고 있다. 최근, 자율주행의 차량이 증가하고 있지만 그에 대한 부작용을 해소하기 위한 노력은 다소 부진한 실정이다. 특히, 야간에 운행되는 자율주행 차량은 더욱 많은 문제들을 안고 있다. 운행의 다양한 환경에서 야간 주행의 환경은 매우 중요한 요소이다. 이에, 본 연구에서는 야간 자율주행 차량에서 핵심적인 문제점으로 부상하고 있는 반대 차량의 전조등 또는 주위 다양한 조명에 의해 발생되는 반사광을 감소시키는 방안을 제안한다. 이를 위하여, 먼저, 야간 주행 중에 센서에 의해 획득한 영상에서 반사광 특성 정보를 활용하여 조명 반사광을 추출한 후, 반사계수를 활용한 각 픽셀의 색상을 찾아 specular 영역을 감소한다. 그 후 영역의 밝기성분만을 이용한 새로운 영역을 찾아 최종적으로 이를 감소하는 방안을 제시한다. 조명 반사광을 완벽히 감소할 수는 없지만 대체적으로 만족할 만한 결과를 얻을 수 가 있었다. 따라서 제안된 연구 방법이 야간에서의 자율주행에서 다양한 단점 및 문제들을 해결하고 사고를 줄이는 방법에 기여할 것으로 사료된다.
Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.
차량의 각종 안전장치 및 운전자 모니터링 장치에서 운전자의 상태를 파악하려 할 때는 운전자, 자동차, 도로 환경의 측정 변수들이 통합적으로 수집되고 해석되어야 한다. 본 논문에서는 운전 상황을 통합적이고 종합적으로 분석하기 위하여 일정한 시간 주기로 운전자, 차량, 도로 주변 환경과 같은 다양한 영역으로부터 데이터를 동기화하여 수집하는 실시간 차량 모니터링 시스템을 제안한다. 제안한 시스템은 소프트 동기화 메커니즘으로 다중 정보를 동기화하여 수집한다. 이는 하나의 마스터 시간과 차량 상태와 운전자 상태 등의 다양한 영역의 데이터들의 키 값들을 동일한 시간 주기로 하나의 파일에 저장하고, 각각 다양한 영역의 데이터들은 저장할 때 마스터 시간과 함께 저장함으로써 후에 특정 시간에 운전 상황을 쉽게 찾아 볼 수 있게 한다. 본 논문에서는 구현된 시스템으로 9명의 피험자의 인지 부하 실험에서 데이터를 수집하는 예를 보인다.
국내 육상교통망의 중추적인 역할을 하는 고속도로는 $7{\times}9$ 형태로 양적, 질적 성장을 거듭하고 있다. 점차 복잡해지는 고속도로 기하구조에 대응하고자 차로유도선을 설치하여 운전자들의 보다 원활한 차로 변경을 유도하고 있으나 해당 시설의 설치기준이 부재하고, 그 효과 검증 또한 제한적으로 시행되고 있는 실정이다. 본 연구는 도로주행 시뮬레이터를 활용하여 주행안전성 측면에서 차로유도선의 효과를 재조명하고, 적정 연장 설치기준을 수립하는데 주된 초점을 맞추고 있다. 이를 위해, 피험자의 선호도를 조사하고, 가상의 주행환경에서 운전자의 차로 변경 행태를 분석하였다. 또한, 피험자가 차로변경 시 느끼는 편안함 정도를 계량화하기 위해 뇌파분석을 실시하였고, 도출된 결과에 대한 통계적 검증을 수행하였다. 본 연구는 차로유도선 설치기준 수립 시 기반자료로 활용될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.