• Title/Summary/Keyword: driving circuit

Search Result 856, Processing Time 0.024 seconds

An Improvement of the Sustain-driving Circuit

  • Choi, Jeong-Pil;Park, Sang-Hyun;Jung, Woo-Chang;Cho, Kyu-Choon;Moon, Seong-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1551-1554
    • /
    • 2008
  • In this paper, some important driving issues pertaining to the sustain-driving circuit are examined A new driving circuit is also proposed The new circuit is cost effective and has a simple PCB layout in comparison to the conventional one. Some additional driving advantages are noted as well.

  • PDF

LED Driving Circuit using Charge Pump for Voltage Distribution (전압 분배용 전하펌프를 사용한 LED 구동회로)

  • Yun, Jang-Hee;Yoo, Sung-Ho;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, a new LED driving circuit which is able to control dimming of LED is proposed using charge pump. The proposed LED driving circuit steps down the input voltage to operate LED without DC-DC converter. The operation of this driving circuit is verified by P-Spice simulation, and the characteristics of the driving circuit is measured and evaluated in the experiments. As a result, the driving circuit efficiency of 88.5[%] is obtained when all LEDs are turned on by digital control method at the highest dimming level(255/255).

Implementation of PDP Driving Circuit for AC-Type

  • Jang, Yun-Seok;Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.285-288
    • /
    • 2007
  • PDP(Plasma Display Panel) driving circuit requires switching devices and capacitors to stand up high voltages over 150volts. Thereby the power consumption and the cost of a PDP driving circuit increase. In this paper, a PDP driving circuit is proposed that can be operated with a lower supply voltage than the supply voltage of conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation and experiments. PSPICE simulation and experiments results show that the output signal can drive PDP cells when the supply voltage is higher than 40volts.

Improvement of the Sustain-driving Characteristics of AC PDP by Changing the Position of the Inductor

  • Choi, Jeong-Pil;Park, Sang-Hyun;Jung, Woo-Chang;Cho, Kyu-Choon;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • The characteristics of the sustain-driving circuit were examined in this paper. The sustain-driving circuit is in charge of the most important part of PDP driving because it manages most of the power consumption in the PDP. A couple of gatedriving circuits for the sustain-driving circuit were introduced in this paper, and a new driving circuit was also proposed. This new circuit is more cost-effective and has a simpler PCB layout compared to the conventional one. Some additional driving advantages were noted as well.

Design of Low Power OLED Driving Circuit (저소비 전력 OLED 디스플레이 구동 회로 설계)

  • 신홍재;이재선;최성욱;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.919-922
    • /
    • 2003
  • This paper presents a novel low power driving circuit for passive matrix organic lighting emitting diodes (OLED) displays. The proposed driving method for a low power OLED driving circuit which reduce large parasitic capacitance in OLED panel only use current driving method, instead of mixed mode driving method which uses voltage pre-charge technique. The driving circuit is implemented to one chip using 0.35${\mu}{\textrm}{m}$ CMOS process with 18V high voltage devices and it is applicable to 96(R.G.B)X64, 65K color OLED displays for mobile phone application. The maximum switching power dissipation of driving power dissipation is 5.7mW and it is 4% of that of the conventional driving circuit.

  • PDF

Design of AC PDP driving Circuit for Low Power Consumption (저전력화를 위한 AC형 PDP구동회로의 설계)

  • Jang, Yoon-Seok;Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2014-2019
    • /
    • 2006
  • PDP driving circuit requires switching devices and capacitors to stand up high voltages over 160V. This is the main cause that the power consumption and the cost of a PDP driving circuit increase. Conventional PDP driving circuits consist of 3 voltage sources and 16 switching devices. In this paper, we propose a PDP driving circuit using 2 voltage sources and 12 switching devices that can be operated with a lower supply voltage than conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation. Simulation results show that the output signal can drive PDP cell when the supply voltage is higher than 45V in the input frequency range 70kHz to 100kHz.

Design of a gate driver driving active balancing circuit for BMSs. (BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계)

  • Kim, Younghee;Jin, Hongzhou;Ha, Yoongyu;Ha, Panbong;Baek, Juwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.732-741
    • /
    • 2018
  • In order to maximize the usable capacity of a BMS (battery management system) that uses several battery cells connected in series, a cell balancing technique that equips each cell with the same voltage is needed. In the active cell balancing circuit using a multi-winding transformer, a balancing circuit that transfers energy directly to the cell (cell-to-cell) is composed of a PMOS switch and a gate driving chip for driving the NMOS switch. The TLP2748 photocoupler and the TLP2745 photocoupler are required, resulting in increased cost and reduced integration. In this paper, instead of driving PMOS and NMOS switching devices by using photocoupler, we proposed 70V BCD process based PMOS gate driving circuit, NMOS gate driving circuit, PMOS gate driving circuit and NMOS gate driving circuit with improved switching time. ${\Delta}t$ of the PMOS gate drive switch with improved switching time was 8.9 ns and ${\Delta}t$ of the NMOS gate drive switch was 9.9 ns.

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

An Implementation of Driving Circuit for Resistive Touch Panel (저항막식 터치 패널의 구동회로 제작)

  • Han, Hyung-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-39
    • /
    • 2009
  • In this paper, we propose a 4-wire type driving circuit for resistive touch panel which was manufactured at the lab. The circuit is designed by using the touch panel controller ADS7846 and AVR microcontroller board. The test result shows that the designed circuit can give and transmit the position information of touch panel to the computer.

  • PDF

The TROPHY (Talented Role-playing Technology with a Dual Polarity Sustainer in Hybrid Mono Board) Driving Method

  • Park, Chang-Joon;Kwak, Jong-Woon;Kim, Tae-Hyung;Park, Hyun-Il;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.24-26
    • /
    • 2006
  • We have developed a new driving method named TROPHY(Talented Role-playing Technology with Dual Polarity sustainer in Hybrid Mono board). In this method, the sustain voltage is partially compared to the conventional method and the number of power sources is reduced by voltage level unification during the reset, address and sustain period. The hybrid mono board was especially developed to implement those technologies. Through this, we can lower the cost with the TROPHY compared to the conventional one. It is a suitable technology to improve the reliability of circuit and image sticking problem. We can also reduce the number of driving boards and the EMI problem compared with those of the conventional method.