• Title/Summary/Keyword: driver behavior model

Search Result 109, Processing Time 0.029 seconds

DC 모터 드라이버의 비선형성을 고려한 전자식 스로틀 바디 모델 (Electronic Throttle Body Model Allowing for Non-linearity of DC Motor Driver)

  • 진성태;강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.71-77
    • /
    • 2008
  • This paper proposes an Electronic Throttle Body (ETB) model considering a non-linearity of DC motor driver which is integrated with a H-bridge and a gate driver. A propagation delay and reverse recovery time of switching components cause non-linear characteristic of DC motor driver. This non-linearity affects not only the amateur voltage of DC motor, but also entire behaviour and parameters of ETB. In order to analyze the behavior of ETB more accurately, this non-linear effect of DC motor driver is modeled. The developed ETB model is validated by use of the step response and ramp response experiments, and it shows relatively accurate results compared with linear DC motor driver model.

계획행동이론을 통한 과속운전 성향분석에 관한 연구 (A Study on Speeding Behavior Propensity Analysis by Theory of Planned Behavior)

  • 이창희;금기정;김명수
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.83-92
    • /
    • 2015
  • PURPOSES : Traffic accidents and damage due to speeding should be recognized as a problem which harms society and the economy as well as the parties to the accidents. It is time to seek more detailed and concrete customized alternatives than the existing policies for the prevention of traffic accidents. METHODS: In this study, we identified the characteristics driver behavior and psychological factors that lead to speeding, and a study was carried out to verify the causality models developed from the factors we identified. RESULTS : Driving behavior variables have a significant effect on speeding behaviors in order of Lapse, Violation, and Mistake. And the violation which is defined as intentional violation showed the result which supports the research hypothesis as it has the significant effect on speeding intention and behaviors. CONCLUSIONS: The result of this study can be utilized to develop educational problems concerning speeding and previous response with the main objective of eliminating speeding driver behavior.

운전행동 분석을 통한 위험운전행동에 관한 연구 (A Study on the Dangerous Driving Behaviors by Driver Behavior Analysis)

  • 서소민;김명수;이창희
    • 한국ITS학회 논문지
    • /
    • 제14권5호
    • /
    • pp.13-22
    • /
    • 2015
  • 최근 교통사고 주요 원인인 인간행동(인적요인)에 대해 관심이 높아졌으며 운전행동분석 도구인 DBQ(Driver Behavior Questionnaire)를 활용한 운전행동(Driving Behavior)에 관한 연구가 활발히 진행되고 있다. 국내에서 진행된 선행연구는 분석대상이 연구원이나 군 공무원으로 한정되며 분석방법은 요인분석 및 회귀분석을 통해 이루어졌다. 이에 본 연구에서는 일반운전자의 운전행동이 위험운전에 미치는 영향요인을 파악하고 이들의 영향관계를 규명하고자 한다. 연구의 범위는 운전경력이 있는 일반운전자를 대상으로 DBQ설문을 실시하여 300부의 유효 표본수를 분석하였으며, 선행연구 고찰을 통해 교통사고의 주요 요인을 DBQ에서 측정가능한 'Lapse, Mistake, Violation' 세 가지속성으로 도출하고 구조방정식 모형을 통한 위험운전행동 모형을 구축하였다. 또한, 위험운전군별 차이를 확인하기 위하여 다중집단분석을 활용하였다. 분석결과 첫째, 'Lapse, Mistake, Violation 요인은 위험운전행동에 영향을 미칠 것이다'라는 가설검증 결과 모든 요인의 통계적 유의성이 확인되었다. 위험운전행동에 미치는 영향정도는 Violation 0.464, Lapse 0.383, Mistake 0.158 순으로 나타났으며 영향을 가장 많이 미치는 요인이 Violation으로 분석되었다. 둘째, 'Lapse, Mistake, Violation 요인이 위험운전행동에 미치는 영향은 위험군에 따라 다를 것이다'라는 가설검증 결과 Lapse 요인이 위험운전행동에 미치는 영향력이 차이가 있는 것으로 분석되었다. 본 연구결과는 위반행동 Violation과 부주의한 실수 Lapse를 고려한 교통사고 예방 프로그램 및 교육도입에 기초자료로 활용 가능할 것이다.

구조방정식을 이용한 고령운전자 교통사고 인적 피해 심각도 분석 (고양시를 중심으로) (An Analysis of Traffic Accident Injury Severity for Elderly Driver on Goyang-Si using Structural Equation Model)

  • 김솔람;윤덕근
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.117-124
    • /
    • 2015
  • PURPOSES : The purpose of this study is to verify traffic accident injury severity factors for elderly drivers and the relative relationship of these factors. METHODS : To verify the complicated relationship among traffic accident injury severity factors, this study employed a structural equation model (SEM). To develop the SEM structure, only the severity of human injuries was considered; moreover, the observed variables were selected through confirmatory factor analysis (CFA). The number of fatalities, serious injuries, moderate injuries, and minor injuries were selected for observed variables of severity. For latent variables, the accident situation, environment, and vehicle and driver factors were respectively defined. Seven observed variables were selected among the latent variables. RESULTS : This study showed that the vehicle and driver factor was the most influential factor for accident severity among the latent factors. For the observed variable, the type of vehicle, type of accident, and status of day or night for each latent variable were the most relative observed variables for the accident severity factor. To verify the validity of the SEM, several model fitting methods, including ${\chi}^2/df$, GFI, AGFI, CFI, and others, were applied, and the model produced meaningful results. CONCLUSIONS : Based on an analysis of results of traffic accident injury severity for elderly drivers, the vehicle and driver factor was the most influential one for injury severity. Therefore, education tailored to elderly drivers is needed to improve driving behavior of elderly driver.

퍼지이론에 기초한 유비쿼터스 교통시대 첨단차량 운전자의 불안감도 산정 (Estimation of Measure of Alarmness of Drivers in Ubiquitous Transport Based on Fuzzy Set Theory)

  • 박희제;배상훈;김영섭
    • 대한토목학회논문집
    • /
    • 제28권1D호
    • /
    • pp.11-19
    • /
    • 2008
  • 현재 첨단차량 분야의 기본 기술 중 기 개발된 추종모형은 운전자 및 운행 환경적 요소 등을 배제하고 오직 두 차량사이의 물리적 상관관계에 의해서만 거동하도록 개발되어져 있다. 그러나 추종거동의 현실적 적용을 위해서는 차량 운전자의 특성 및 운행 환경적 요소의 적용이 필수적이다. 따라서 본 논문에서는 보다 현실적용이 용이한 추종모형의 개발을 위한 선행연구로서 차량 운전자가 주행 중 느끼는 불안감의 정도를 산정하기 위한 방법을 제시하고자 하였다. 운전자의 불안감도(Measure of Alarmness ; MOA)는 유비쿼터스 교통 하에서 첨단차량이 추종거동을 하고 있을 때 추종차량과 선행차량 간의 상대적 관계 및 환경적 요인과 운전자의 특성에 의해 측정되는 수치이다. 운전자 MOA의 일반적이고 객관적인 측정을 위하여 운전자 불안감도에 대한 설문조사를 수행하고 이를 바탕으로 MOA 측정 퍼지로직모형을 구축하였다. 시나리오에 의해 정의된 입력값으로 MOA를 산정하여 구축한 퍼지로직모형의 타당성을 입증하였으며, 본 논문의 결과는 주행 중 관여하는 여러 가지 요소에 따라 추종상태에서 느끼는 운전자의 불안감도를 정량적으로 측정함으로서 기존의 추종거동모형을 보다 현실화시키기 위한 기틀을 마련하였다. 이러한 불안감도는 운전자의 주행 중 안전성과 안락함을 평가하는데 주요한 척도로 적용될 것으로 사료된다.

The expanding reach of the GAL4/UAS system into the behavioral neurobiology of Drosophila

  • Jones, Walton D.
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.705-712
    • /
    • 2009
  • Our understanding of the relationships between genes, brains, and behaviors has changed a lot since the first behavioral mutants were isolated in the fly bottles of the Benzer lab at Caltech (1), but Drosophila is still an excellent model system for studying the neurobiology of behavior. Recent advances provide an unprecedented level of control over fly neural circuits. Efforts are underway to add to existing GAL4-driver lines that permit exogenous expression of genetic tools in small populations of neurons. Combining these driver lines with a variety of inducible UAS lines permits the visualization of neuronal morphology, connectivity, and activity. These driver lines also make it possible to specifically ablate, inhibit, or activate subsets of neurons and assess their roles in the generation of behavioral responses. Here, I will briefly review the extensive arsenal now available to drosophilists for investigating the neuronal control of behavior.

가상현실 기반에서 차량 운전자 거동의 가시화 (Motion Visualization of a Vehicle Driver Based on Virtual Reality)

  • 정윤석;손권;최경현
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.201-209
    • /
    • 2003
  • Virtual human models are widely used to save time and expense in vehicle safety studies. A human model is an essential tool to visualize and simulate a vehicle driver in virtual environments. This research is focused on creation and application of a human model fer virtual reality. The Korean anthropometric data published are selected to determine basic human model dimensions. These data are applied to GEBOD, a human body data generation program, which computes the body segment geometry, mass properties, joints locations and mechanical properties. The human model was constituted using MADYMO based on data from GEBOD. Frontal crash and bump passing test were simulated and the driver's motion data calculated were transmitted into the virtual environment. The human model was organized into scene graphs and its motion was visualized by virtual reality techniques including OpenGL Performer. The human model can be controlled by an arm master to test driver's behavior in the virtual environment.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

기계학습 모델과 설문결과를 융합한 공격적 성향 운전자 탐색 연구 (A Study of Aggressive Driver Detection Combining Machine Learning Model and Questionnaire Approaches)

  • 박귀우;박찬식
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권3호
    • /
    • pp.361-370
    • /
    • 2017
  • 본 논문에서는 공격적 성향의 운전자를 판단할 수 있는 기계학습 방식과 설문지 방식을 융합한 운전자 성향 판단 연구의 일환으로 두 방법으로 결정된 운전자 성향정보의 상관성을 분석하였다. 30명의 운전자를 대상으로 설문지를 이용한 주관적 성향을 정보를 수집하고 기계학습 기반의 성향판단 시스템을 이용하여 객관적 성향을 취득하였다. 이 중에서 기계학습 기반의 성향판단 시스템은 운전자행위 성향 분류 모델을 기반으로 설계되었다. 모델을 도출하기 위하여 운전자의 가속 패달과 브레이크 패달 조작 데이터와 HMM 기법을 이용한 기계학습을 수행하였다. 두 가지 방법으로 추정한 공격적 성향정보를 Pearson 방식으로 상관관계를 분석한 결과 높은 상관관계가 있음을 확인하였다. 뿐만 아니라 객관적 성향은 동일한 운전자에 대하여 고유한 특성이 있음을 확인하였다. 본 논문의 실험결과는 향후 두 방법을 융합하는 연구를 수행하기 위한 참고자료가 될 것이다. 또한 운전자의 공격적 성향이 주의어시스트, 운전자 식별, 도난방지 등 지능형 운전자 보조시스템에도 응용 될 수 있음을 확인하였다.