• 제목/요약/키워드: drive method

검색결과 2,380건 처리시간 0.033초

토크리플 억제와 역률개선을 위한 단상 SRM의 구동시스템 (Single-phase SRM Drive for Torque Ripple Reduction and Power Factor Improvement)

  • 안진우;양가녕
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.389-395
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier with diodes and many filter capacitances connected with AC source. Although the peak torque ripple of SRM is small because of large capacity of the capacitance, the charge and discharge time swhich the AC source acts on the capacitance are small and the peak current will pass on the side of source, so power factor and system efficiency decrease. Therefore a novel SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor and switching topology. The proposed drive circuit consists of one switching part and diodes which can separate the output of AC/DC rectifier from the large capacitance and supply power to SRM alternately in order to realize reduction of torque ripple and improvement of power factor through the turn on and turn off of switching part. In addition, the validity of method is tested by simulation and experiment.

약계자 제어에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with Field Weakening Control)

  • 정동화;김종관;박기태;차영두
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.85-93
    • /
    • 2005
  • 본 논문에서는 고속 드라이브를 위하여 IPMSM의 약계자 영역에서 최대 토크제어를 제시한다. 최대 토크동작을 위하여 최적 d축 전류를 결정하고 이 전류를 각 제어모드에서 사용한다. 최대 토크를 발생하기 위하여 전류 조절기의 출력인 인버터의 출력전압은 DC 링크전압을 최대로 이용한다. 제어모드의 원활한 전이는 지령신호에 기초하여 자동적으로 수행한다. 본 논문에서 제시한 최대 토크제어로 IPMSM 드라이브에 적용시험을 한다. 그리고 시험결과의 응답특성을 다양하게 분석하여 본 논문의 타당성을 입증한다.

슬림형 광 디스크 드라이브의 방진설계 (An Anti-vibration Design of Slim-type Optical Disk Drive)

  • 김남웅;김국원;홍구;정문채;김외열
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF

동기 구동형 이동로봇의 자율주행을 위한 위치측정과 경로계획에 관한 연구 (A Study on the Localization Method for the Autonomous Navigation of Synchro Drive Mobile Robot)

  • 구자일;홍준표;이원석
    • 전자공학회논문지 IE
    • /
    • 제43권1호
    • /
    • pp.59-66
    • /
    • 2006
  • 본 연구에서는 동기 구동형 이동 로봇의 제어를 위한 운동 방정식, 주어진 지도 내의 목표 지점으로의 최적 경로 생성과 경로 추적을 위한 경로 계획, 그리고 이동 로봇의 위치를 측정하기 위한 균등 군집 몬테카를로 위치 측정 기법을 제안하였다. 이동 로봇의 위치 측정 실험을 통해 총 73회 반복된 위치 측정에서 기존의 몬테카를로 위치 측정의 평균 수행 속도가 12.8ms로 측정된 반면, 균등 군집 관리 몬테카를로 위치 측정의 평균 수행 속도는 9.3ms로 측정되었다. 또한 기존의 몬테카를로 위치 측정 기법이 위치 측정에 실패하는 동일 환경에서 균등 군집 몬테카를로 기법은 올바른 일치 측정의 결과를 보임을 확인하였다.

유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계 (Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method)

  • 이성래
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.475-481
    • /
    • 2013
  • 직접구동형 서보밸브의 제어시스템은 비선형적이며 밸브스풀에 미치는 유체력의 영향은 매우 크고 부하압력의 크기에 좌우된다. 제어시스템의 설계요구조건을 만족시키기 위해, 제약직접탐색방법인 유전자 알고리즘과 콤플렉스법을 적절히 활용하여 진상-지상제어기 및 미분피드백제어기의 최적 상수값을 탐색하였다. 최적 제어기 상수값을 대입하여 제어시스템을 시뮬레이션한 결과 설계요구조건을 만족하였다.

퍼지제어와 손실최소화 기법을 이용한 IPMSM 드라이브의 실시간 효율최적화 제어 (On-line Efficiency Optimization of IPMSM drive using Fuzzy Control and Loss Minimization Method)

  • 강성준;고재섭;장미금;김순영;문주희;이진국;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1356-1357
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes on-line efficiency optimization of IPMSM drive using fuzzy logic control(FLC) and the loss minimization method. In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to IPMSM drive system and the operating characteristics controlled by the loss minimization method and FLC control are examined in detail.

  • PDF

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

드릴용 SRM의 최적운전을 위한 스위칭각 산정 (A Computing Switching Angle for Adaptive Operation of SRM for Drill)

  • 최경호;김남훈;백원식;김동희;노채균;김민회;황돈하
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권11호
    • /
    • pp.575-582
    • /
    • 2001
  • This paper presents a calculating method of switching angle for adaptive switched reluctance motor (SRM) drive of a drill. The operation of the SRM is completely characterized by the flux linked by one phase winding which depends only on the current in that same phase winding and the rotor position. An efficiently adaptive SRM drive is possible on appropriately scheduling the commutation angles with accurate rotor position, supplied current value and speed information. An adaptive SRM drive with reduction torque ripple should be controlled by an optimized phase current control along with rotor position. Therefore, we are suggested a computing method of switching turn-on and off angles for adaptationally SRM operation with varied rotor speed and load. To probe the computing method, we have some simulation and experiment, it is shown a good result that can be computing the optimized switching angles for an electric drill motor.

  • PDF

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

An Optimal Approach to Rotational Vibration Suppression using Disturbance Observer in Disk Drive Systems

  • Park, Sung-Won;Kim, Nam-Guk;Chu, Sang-Hoon;Kang, Chang-Ik;Lee, Ho-Seong
    • 정보저장시스템학회논문집
    • /
    • 제3권1호
    • /
    • pp.5-12
    • /
    • 2007
  • This paper investigates the design of disturbance observer for rotational vibration suppression in disk drive systems. The design aims to provide an optimal controller which satisfies both vibration performance and robust stability. It consists of an inversion method, a special filter, and optimization scheme. Firstly a new inversion method is introduced, which provides more accurate inversion compared to conventional zero phase error method. The inversion is to deal with unstable zeros in the plant model. Secondly a special filter for disturbance selection is given, which features adjustable gain and band pass characteristics so that it enables flexible shaping of the loop considering the trade-off between performance and stability margins. And finally the parameters of disturbance observer are optimized in conjunction with external disturbance model. Simulation and experiment on commercial hard disk drives confirm that the design is very effective to such disturbance which is hard to be handled by conventional approach.

  • PDF