• Title/Summary/Keyword: drive method

Search Result 2,380, Processing Time 0.033 seconds

Single-phase SRM Drive for Torque Ripple Reduction and Power Factor Improvement (토크리플 억제와 역률개선을 위한 단상 SRM의 구동시스템)

  • Ahn Jin-Woo;Liang Jianing
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.389-395
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier with diodes and many filter capacitances connected with AC source. Although the peak torque ripple of SRM is small because of large capacity of the capacitance, the charge and discharge time swhich the AC source acts on the capacitance are small and the peak current will pass on the side of source, so power factor and system efficiency decrease. Therefore a novel SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor and switching topology. The proposed drive circuit consists of one switching part and diodes which can separate the output of AC/DC rectifier from the large capacitance and supply power to SRM alternately in order to realize reduction of torque ripple and improvement of power factor through the turn on and turn off of switching part. In addition, the validity of method is tested by simulation and experiment.

Maximum Torque Control of IPMSM Drive with Field Weakening Control (약계자 제어에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa;Kim, Jong-Gwan;Park, Gi-Tae;Cha, Young-Doo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is posed maximum torque control of IPMSM for high speed drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for high speed drive, the operating characteristics controlled by maximum torque control are examined in detail by experiment.

An Anti-vibration Design of Slim-type Optical Disk Drive (슬림형 광 디스크 드라이브의 방진설계)

  • Kim, Nam-Woong;Kim, Kug-Weon;Hong, Goo;Chung, Mun-Chae;Kim, Wae-Yeul
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF

A Study on the Localization Method for the Autonomous Navigation of Synchro Drive Mobile Robot (동기 구동형 이동로봇의 자율주행을 위한 위치측정과 경로계획에 관한 연구)

  • Ku, Ja-Yl;Hong, Jun-Peu;Lee, Won-Suk
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, we have proposed a motion equation to control synchro drive mobile robot, a path plan to compute and track the best path to given destination and a technique utilizing uniform distribution and cluster management based Monte Carlo localization to have track current position of moving robot. In the localization test which was repeated 73 times resulted as following. The average process time of original Monte Carlo localization was 12.8ms. The proposed cluster management Monte Carlo localization resulted 9.3ms. Also the proposed method resulted correctly in the cases where original method failed.

Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계)

  • Lee, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.475-481
    • /
    • 2013
  • The control system of a direct drive servo valve is a nonlinear system, and the flow force effect on the spool motion is significant and dependent on the load pressure. To satisfy the control system design requirements, the optimal parameters of the lead-lag controller and the derivative feedback controller are searched for using a genetic algorithm and a complex constrained direct search type method. The obtained controller parameters successfully perform their role to satisfy the control system design requirements.

On-line Efficiency Optimization of IPMSM drive using Fuzzy Control and Loss Minimization Method (퍼지제어와 손실최소화 기법을 이용한 IPMSM 드라이브의 실시간 효율최적화 제어)

  • Kang, Seong-Jun;Ko, Jae-Sub;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1356-1357
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes on-line efficiency optimization of IPMSM drive using fuzzy logic control(FLC) and the loss minimization method. In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to IPMSM drive system and the operating characteristics controlled by the loss minimization method and FLC control are examined in detail.

  • PDF

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

A Computing Switching Angle for Adaptive Operation of SRM for Drill (드릴용 SRM의 최적운전을 위한 스위칭각 산정)

  • Choe, Gyeong-Ho;Kim, Nam-Hun;Baek, Won-Sik;Kim, Dong-Hui;No, Chae-Gyun;Kim, Min-Hoe;Hwang, Don-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.575-582
    • /
    • 2001
  • This paper presents a calculating method of switching angle for adaptive switched reluctance motor (SRM) drive of a drill. The operation of the SRM is completely characterized by the flux linked by one phase winding which depends only on the current in that same phase winding and the rotor position. An efficiently adaptive SRM drive is possible on appropriately scheduling the commutation angles with accurate rotor position, supplied current value and speed information. An adaptive SRM drive with reduction torque ripple should be controlled by an optimized phase current control along with rotor position. Therefore, we are suggested a computing method of switching turn-on and off angles for adaptationally SRM operation with varied rotor speed and load. To probe the computing method, we have some simulation and experiment, it is shown a good result that can be computing the optimized switching angles for an electric drill motor.

  • PDF

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

An Optimal Approach to Rotational Vibration Suppression using Disturbance Observer in Disk Drive Systems

  • Park, Sung-Won;Kim, Nam-Guk;Chu, Sang-Hoon;Kang, Chang-Ik;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2007
  • This paper investigates the design of disturbance observer for rotational vibration suppression in disk drive systems. The design aims to provide an optimal controller which satisfies both vibration performance and robust stability. It consists of an inversion method, a special filter, and optimization scheme. Firstly a new inversion method is introduced, which provides more accurate inversion compared to conventional zero phase error method. The inversion is to deal with unstable zeros in the plant model. Secondly a special filter for disturbance selection is given, which features adjustable gain and band pass characteristics so that it enables flexible shaping of the loop considering the trade-off between performance and stability margins. And finally the parameters of disturbance observer are optimized in conjunction with external disturbance model. Simulation and experiment on commercial hard disk drives confirm that the design is very effective to such disturbance which is hard to be handled by conventional approach.

  • PDF