• Title/Summary/Keyword: drinking groundwater

Search Result 236, Processing Time 0.035 seconds

Concentration distributions and formation characteristics of trihalomethanes in drinking water supplies to rural communities (농촌지역 마을상수 중 trihalomethanes의 농도 분포 및 생성 특성)

  • Kim, Hekap;Kim, Seyoung
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-64
    • /
    • 2015
  • This study aimed to investigate the concentration distributions and formation characteristics of trihalomethanes (THMs) in drinking water supplies to rural communities. Water samples were collected twice from 40 rural households located on the outskirts of Chuncheon city of Gangwon Province in the summers of 2010 and 2011, and urban drinking water samples were collected from 20 faucets during the same period in 2011 for comparison purpose. Water temperature, pH, and residual chlorine (total and free) concentrations were measured in the field, and samples were analyzed for dissolved organic carbon (DOC) and THM concentrations in the laboratory. The average DOC concentrations in rural water samples were not greatly different between groundwater (n = 20) and surface water (n = 20) which were used as sources for drinking water (1.81 vs. 1.91 mg/L). However, the average concentrations of total THMs (TTHMs) in groundwater ($9.77{\mu}g/L$) were much higher than those in surface water ($2.85{\mu}g/L$) and similar to those in urban drinking water samples ($10.8{\mu}g/L$). Unlike urban water supply, rural water (particularly groundwater) contained more brominated THM species such as dibromochloromethane (DBCM), suggesting its relatively high content of bromide ion (Br-). This study showed that rural water supplies have different THM formation characteristics from urban water supplies, probably due to their differences in source water quality properties.

Development of Remote Monitoring System for groundwater purifier apparatus for community wells (마을 공동 우물용 지하수 정수 장치의 원격 모니터링 시스템 개발)

  • Kim, Dong-Jin;park, Sang-heup;Lee, Hong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.224-231
    • /
    • 2019
  • Recently, the pollution of groundwater has become serious. In particular, the contamination of groundwater near livestock farms is becoming increasingly severe and it is difficult to drink with drinking water. In this paper, a groundwater purifier apparatus that can be installed in a community well was designed. The designed groundwater purifier apparatus enables a RO membrane filter and UV sterilization to remove pollutants, such as heavy metals, bacteria, and organic compounds. In addition, electrical conductivity, pressure, and flow sensors were added for remote monitoring. Remote monitoring of the system can determine the level of fouling and contamination of RO membrane filters through pressure and flow sensor data, and can record changes in the contamination and condition of groundwater through the electrical conductivity of the feed water. The designed groundwater purifier apparatus was installed at a farmhouse and remote monitoring. The result after 15 days of operating a groundwater purifier apparatus and analyzing the monitoring data revealed an average permeate water flow rate of 2.67L/min and an average water pressure of 7.09kgf/㎠, indicating that the RO Membrane filtered without fouling and clogging. The average electrical conductivity was 796.6 S/㎠ of the feed water and 55.6 S/㎠ of permeate water, which is similar to that of general tap water. Through this, it was confirmed that no pollutant occurred in the surroundings. Therefore, the designed groundwater purifier apparatus can confirm the replacement time of the RO membrane filter in advance through remote monitoring, and check the pollution state of the groundwater.

Distribution Characteristics of Uranium and Radon Concentrations of Groundwater in Gwangju Area (광주지역 지하수 중 우라늄과 라돈의 함량 분포 특성)

  • Seo, Heejeong;Min, Kyoungwoo;Park, Jiyoung;Park, Juhyun;Hwang, Hoyeon;Park, Seil;Kim, Seonjeong;Jeong, Sukkyung;Bae, Seokjin;Kim, Seongjun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.86-95
    • /
    • 2022
  • Background: As high concentrations of uranium and radon have been detected in some areas in Korea, it is considered necessary to investigate natural radioactive materials in the Gwangju area. Objectives: This study aimed to identify the hydrochemical characteristics of groundwater in Gwangju and investigate the distribution characteristics of uranium and radon, which are naturally radioactive substances. Methods: To determine the uranium and radon concentrations in groundwater according to the geology of the Gwangju area, we measured 62 groundwater wells. A geological distribution map of uranium and radon content was prepared for this study. Results: The groundwater type, defined using a Piper diagram, was mainly Ca-HCO3. The concentration of uranium in the groundwater ranged from 0 to 29.3 ㎍/L, with a mean of 3.3 ㎍/L and a median of 0.9 ㎍/L. The median concentration of uranium in groundwater was highest in alluvium, granitic gneiss, and biotite granite (classified by geological unit), in that order. The concentration of radon in the groundwater ranged from 4.8 to 313.2 Bq/L, with a mean of 75.6 Bq/L and a median of 59.6 Bq/L. The median concentration of radon in groundwater was highest in biotite granite, alluvium, and granitic gneiss, in that order. As a result of the correlation analysis of groundwater in the study area, there was no significant correlation between uranium and radon. Conclusions: In this study area, uranium was shown to be far below the concentrations allowed by drinking water quality standards, but radon concentrations exceeded drinking water quality monitoring standards in 11% of the samples. It was judged that appropriate measures, such as the installation of radon reduction facilities, will be required after a thorough review of high-concentration radon detection sites of in the research area.

A Study on The Groundwater Contamination Focused on VOCs in Chung-Nam Area (충청남도 지역의 VOCs를 중심으로 한 지하수오염 실태)

  • 이창균;장순웅;유지택;임봉수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • This research was investigated to examine the status of goundwater contamination in Chung-Nam area over 2 years from 1996 May to 1998 May. The results show that the overall detection rates of VOCs (volatile organic compounds) by region were as followed: industrial region > agricultural & industrial complex region > gas station region > around industrial region > downtown region, and excess rates of those were as followed: industrial region > gas station region > agricultural & industrial region > around industrial region > downtown region. Benzene and TCE of VOCs examined in Chon-An industrial region exceeded drinking water standard. At the agricultural & industrial complex region, the observed mean concentration of TCE was 3.107 mg/L and TCE was also detected at 48.152 mg/L which is 100 times higher than drinking water standard, and other VOCs were also observed at higher concentrations as well. Based on our studies, It is concluded that appropriate remedial action should be performed to protect further groundwater contamination and to restore groundwater quality in Chung-Nam area.

  • PDF

Application of a Pilot-Scale Electrodialysis System for Groundwater Polluted with Arsenic and Manganese (파일롯 규모 전기투석 막여과 시스템을 이용한 비소와 망간오염 지하수 처리)

  • Choi, Su Young;Kwon, Min Wook;Park, Ki Young;Cha, Ho Young;Kim, Hee Jun;Kweon, Ji Hyang
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.334-340
    • /
    • 2017
  • A pilot-scale electrodialysis system was designed and constructed to treat groundwater polluted with arsenic and manganese. Synthetic groundwater, in which some amount of arsenic and manganese was added to make 500 mg/L of Mn and $50{\mu}g/L$ of As, was used as a feed for the ED system. The limiting current density, linear water velocity, applied voltage, and membrane surface area were investigated to obtain efficient and economic operation of the ED system. The linear water velocity was increased 0.74 cm/s to 11 cm/s based on evaluation of limiting current density. The water quality of diluate for 85 minutes of operation was satisfied with water quality criteria for drinking water using the ED system with 14 pairs of ion exchange membranes. The increased membrane pairs to 21 and 42 pairs were very effective to reduce conductivities of the diluate. The operation cost of the ED system was assessed using specific energy consumption, which was $1.065{\sim}1.2kWh/m^3$. Considering low salt concentrations of the groundwater, improvement of the ED system are required to increase current utilization and to apply low voltage while the ED system was applicable to produce drinking water.

Hydrogeochemical Characteristics and Natural Radionuclides in Groundwater for Drinking-water Supply in Korea (국내 음용지하수의 수리지화학 및 자연방사성물질 환경 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Lee, Young-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.133-142
    • /
    • 2011
  • A total of 247 samples were collected from groundwater being used for drinking-water supply, and hydrogeochemistry and radionuclide analysis were performed. In-situ analysis of groundwaters resulted in ranges of $13.7{\sim}25.1^{\circ}C$ for temperature, 5.9~8.5 for pH, 33~591 mV for Eh, $66{\sim}820{\mu}S/cm$ for EC, and 0.2~9.4 mg/L for DO. Major cation and anion concentrations of groundwaters were in ranges of 0.5~227.6 for Na, 1.0~279.3 for Ca, 0.0~9.3 for K, 0.1~100.1 for Mg, 0.0~3.3 for F, 0.9~779.1 for Cl, 0.3~120.4 for $SO_4$, 0.0~27.4 for $NO_3$-N, and 6~372 mg/L for $HCO_3$. Uranium-238 and radon-222 concentrations were detected in ranges of N.D-$131.1{\mu}g/L$ and 18-15,953 pCi/L, respectively. In case of some groundwaters exceeding USEPA MCL level ($30{\mu}g/L$) for uranium concentration, their pH ranged from 6.8 to 8.0 and Eh showed a relatively low value(86~199 mV) compared to other areas. Most groundwaters belonged to Ca-(Na)-$HCO_3$ type, and groundwaters of metamorphic rock exhibited the highest concentration of Na, Mg, Ca, Cl, $NO_3$-N, U, and those of plutonic rock showed the highest concentration of $HCO_3$, and Rn. Uranium and fluoride from granite areas did not show any correlation. However, uranium and bicarbonate displayed a positive relation of some areas in plutonic rocks($R^2$=0.3896).

Geochemistry of Groundwater in Limestone and Granite of Hwanggangri Fluorite Mineralized Area (황강리 형석 광화대내 석회암 및 화강암지역 지하수의 지구화학적 특성)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.486-493
    • /
    • 2002
  • Hydrogeochemical characteristics of groundwater from a limestone and granite area were studied in the Hwanggangri district, where important fluorite ore deposits are distributed. The geochemical properties of groundwater from limestone and granite are commonly characterized as Ca$^{2+}$-HCO$_3\;^-$ and (Ca$^{2+}$+Na$^+$)-HCO$_3\;^-$ type, respectively. Groundwater, contaminated by mine drainage water from the neighboring ore deposits, has not been observed yet. However, fluoride in groundwater exceeding the drinking water permission level is found in the wells located in a Cretaceous granite area. The concentrations of F in the groundwater show a positive relationship with the values of Na, HCO$_3$, Li and pH. This may suggest that the groundwater come from the decomposition of fluoride-bearing silicate minerals within highly differentiated granitic rocks.

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF

The study on the quality standards of groundwater in Korea in comparing to the developed countries (우리나라와 선진국간의 지하수 수질기준에 관한 고찰)

  • Bang, Sang-Weon;Jung, Jae-Hyun
    • Journal of Environmental Policy
    • /
    • v.4 no.2
    • /
    • pp.57-82
    • /
    • 2005
  • In this study, we propose methods for. the efficient management and integrity of groundwater in response to a diminishing supply. As an alternative water resource for the future. we investigated and comparatively analyzed the quality standards of groundwater in the US (New York, Wisconsin and Texas), Austria, Netherlands, Canada, Japan and United Kingdom. These developed countries heavily depend on groundwater, more than 70%, for drinking water and apply those drinking water standards to groundwater quality. However, there exists few differences in the quality standards of groundwater among the countries, because each country possesses its own individual environment and management. In Korea, surface water pollution is getting serious and its water resources are diminishing. Therefore we propose several new quality criteria that many countries regulate at these days for their efficient management of groundwater. There is a need to divide BTEX criterion into Benzene, Toluene, Ethylbenzene and Xylene, individually. In. addition, it is needed to establish BTEX criteria into agricultural water and industrial water use standards as well as daily life use standards. Also, regulations for some PAHs, showing carcinogenicity, are required. Due to rapid industrialization various hazardous chemicals were utilized and their uses are increasing each year. Therefore, there is a strong need to introduce n~w standards and tighter regulations of the levels. At the same time, the criterion of nitrogenous compounds need' to be regulated individually in order to prevent the damage incurred by the compounds. Several developed countries have established standards for radon, previously caused environmental accidents in Korea. Therefore, we propose the necessity of groundwater quality standards for radon in this study.

  • PDF

대전지역 약수의 수질특성과 관리방안

  • 정찬호;김은지;문병진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.15-18
    • /
    • 2001
  • Sixty natural springs and wells used as community facilities for drinking water are developed along mountain climbing way of suburban area and residential area in Daejeon City. In this study, the seasonal variation of their water quality and hydrochemical characteristics were investigated. Some natural springs are vulnerable to bacilli contamination because of their short residence time and shallow circulation in subsurface environment. The waters show hydrochemical types of Ca-HCO$_3$ and Na-HCO$_3$, and are characterized by low electrical conductance and weak acidic pH.

  • PDF