Geochemistry of Groundwater in Limestone and Granite of Hwanggangri Fluorite Mineralized Area

황강리 형석 광화대내 석회암 및 화강암지역 지하수의 지구화학적 특성

  • Hwang, Jeong (Department of Geosystem Engineering, Daejeon University)
  • 황정 (대전대학교 지구시스템공학과)
  • Published : 2002.08.31

Abstract

Hydrogeochemical characteristics of groundwater from a limestone and granite area were studied in the Hwanggangri district, where important fluorite ore deposits are distributed. The geochemical properties of groundwater from limestone and granite are commonly characterized as Ca$^{2+}$-HCO$_3\;^-$ and (Ca$^{2+}$+Na$^+$)-HCO$_3\;^-$ type, respectively. Groundwater, contaminated by mine drainage water from the neighboring ore deposits, has not been observed yet. However, fluoride in groundwater exceeding the drinking water permission level is found in the wells located in a Cretaceous granite area. The concentrations of F in the groundwater show a positive relationship with the values of Na, HCO$_3$, Li and pH. This may suggest that the groundwater come from the decomposition of fluoride-bearing silicate minerals within highly differentiated granitic rocks.

황강리 지역 형석 광화대내 석회암 및 화강암지역 지하수의 수문지화학적 특성을 연구하였다. 석회암 지역 지하수는 Ca$^{2+}$-HCO$_3\;^{-}$유형이며, 화강암 지역 지하수는 (Ca$^{2+}$+Na$^{+}$)-HCO$_3\;^{-}$유형이다. 연구지역 내 광산폐수에 의한 음용지하수의 오염은 아직 발견되지 않았으나, 백악기 화강암내 음용지하수에는 불소함량이 기준치를 초과하는 곳이 많다. 화강암 지역 지하수는 F 함량이 증가함에 따라 Na, HCO$_{3}$, Li, pH 등이 증가 하는 지구화학적 특성을 보인다. 지하수내 불소의 기원은 형석 혹은 함불소 규산염광물의 용해에 기인하며, 이들 광물은 산성 화강암류와 성인적 관련이 깊은 것으로 판단된다.

Keywords

References

  1. 박희인, 1976, 우리나라 형석광상의 유체포유물 연구. 광산 지질, 9(1), 27-44
  2. 유재영, 최인규, 김형수, 1994, 춘천지역의 기반암의 종류에 따른 지표수의 지구화학적 특성. 지질학회지, 30(3), 307-324
  3. 이민성, 박봉순, 1965, 황강리 도폭, 국립지질조사소
  4. 전효택, 이희근, 이종운, 이대혁, 류동우, 오석영, 1997, 동해신광산 터널굴착공사와 관 련된 지표수 및 지하수의 유동변화에 대한 조사연구(m-수리지구화학적 고찰. 지하수환경학회지, 4(1), 27-40
  5. 황 정, 2001, 금산-완주지역 형석광화대내 석회암 및 화강암지역 지하수의 불소 분포특성 및 저감방안. 자원환경지질, 34(1), 105-117
  6. Fritz, R, Fontes, J.C., Frape, S.K., Louvat, D., Michelot, J.L., and Balderer, W., 1989, The isotope geochemistry of carbon in groundwater at Stripa. Geochemica et Cosmochimica Acta, 53, 1765-1775 https://doi.org/10.1016/0016-7037(89)90297-4
  7. Garciri, S.J. and Davies T.C., 1993, The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395-412 https://doi.org/10.1016/0022-1694(93)90201-J
  8. Greengerg, A.E., Clesceri, L.S., and Eaton, A.D., 1992, Standard methods for the examination of water and wastewater. 18th ed., American Public Health Association, Washington DC, 1010 p
  9. Nesbitt, H.W. and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimca Acta., 48, 1523-1534 https://doi.org/10.1016/0016-7037(84)90408-3
  10. Nordstrom, D.K., Ball, J.W., Nonahoe, R.J., and Whittemore, D., 1989, Groundwater chemistry and water rock interactions at Stripa. Geochernica et Cosmochimica Acta, 8, 153-160
  11. Hper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union, Transaction, 5, 914-923
  12. Rao, N.V.R., 1997, The Occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India, Hydrological Sciences, 42(6), 877-892 https://doi.org/10.1080/02626669709492085
  13. Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Thyu, H.S., Jeong, S.H. and Park, J.N., 1973, Geology of the Hwanggangni mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 118 p
  14. Savage, D., Cave, M.R., Milodowski, A.E., and George, I., 1987, Hydrothermal alteration of granite by meteoric fluid; an example from the Carnmenllis granite, United Kingdom. Contribution to Mineralogy and Petrology, 96, 391-405 https://doi.org/10.1007/BF00371257
  15. WHO(World Health Organization), 1994, Fluorides andoral health. World Health Organization Tech. Rep. Ser. 846, Geneva