• Title/Summary/Keyword: drilling&blasting

Search Result 87, Processing Time 0.021 seconds

Advancement of Blast Effect by Inducing Drill Jumbo on Automatic Drilling System (점보드릴 자동천공 시스템 도입에 의한 발파효과 향상)

  • Kim, Seung-Jun;Kim, Jeong-Gyu;Ko, Young-Hun;Ahn, Je-Min;Kim, Nam-su;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Drilling operation for blasting is an important factor to determine blast effect. Drilling errors that arise from performing drilling for blasting purposes can reduce blasting effect causing residual holes, overbreak, and heterogeneous fragmentation, etc. Automatic drilling system was induced for precise drilling. As a result, drilling error caused by spaces between holes and burden was minor at 0~2.6% and accordingly, blasting effect was improved with over 90% drilling rate, the ratio of overbreak amount to total drilling amount at 4.3%, proportion of fragmentation rock under 50cm at 89~95% and so from this analyses, it was estimated to reduce the total cycle times related to blasting process.

A Numerical Study on the Effective Dimension in Slot-drilling Method (슬롯드릴링공법의 유효제원에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Lee, Jee-Hoon;Son, Sung-Hoon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.50-58
    • /
    • 2010
  • This study explores the slot-drilling method that has not yet enough been studied in Korea and intends to provide a theoretical framework for putting the method into practice in a construction site. The possible reduction of ground vibration by implementing slot-drilling methods is addressed. Two main subjects dealt with include the variation of vibration velocity that is based on the distance between the slot-drilling and the epicenter of blasting and the analysis of appropriate effective dimension of slot-drilling width and height to control blasting vibration. This study shows that effect of vibration reduction decreases when distance of the slot-drilling and the epicenter of blasting is getting larger and also reveals that there is a correlation between the slot size and the vibration velocity at any point.

Analytic Hierarchy Process Analysis on Correlation Between Drilling Error and Blasting Accuracy (발파공의 천공오차와 발파정확도의 상관성에 관한 현장조사 및 계층분석기법 연구)

  • Lee, Deok-Hwan;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.386-394
    • /
    • 2014
  • Drilling accuracy is known to be one of the most important factors determining blasting efficiency in mining by blast operation. Therefore analysing the causes of drilling error and preparing a countermeasure for minimizing drilling error are very important for blasting efficiency and safety. In this study, causes of drilling error are analyzed with dividing them into controllable factors and uncontrollable factors, and relationship between each cause is also comprehended through field measurement and AHP analysis. Finally, effective measures to help lower the drilling error are proposed with the results from weighting analysis for each factor.

On the Cautious blasting pattern of Weak zone of NAMSAN NO. twin Tunneling (남산1호터널 쌍굴 굴진공사 정밀발파 작업에 대한 안전도검토)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.8 no.4
    • /
    • pp.3-22
    • /
    • 1990
  • The $\varphi{4.5}$ meters pilot tunneling work is almost done to the $\varphi{11.3}$ meters twin tunnel of NAM SAN No1. The south side pit of 400 meters is weak zone of Rock status, so client request us to allow the cautious blasting pattern for drilling on the condition of 0.2 kine vibration allowance limited for the safety of side running tunnel. The pattern of cautious blasting carried out by 6 time divided fiving on the round drilling depth of 1.20 meters(1.10) and also applied control blasting method with line drilling due to the reduction of vibration.

  • PDF

Effect of the Drilling & Blasting Conditions on the Range of Overbreak in Tunel Excavation (터널굴착시 천공 및 발파조건이 여굴의 크기에 미치는 영향)

  • Kim, Gyung-Hun;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.3-17
    • /
    • 2004
  • Overbreak, underbreak and range of disturbed rock zone (DRZ) are the most important factors in evaluating the results of tunnel blasting. These factors, which depend on the discontinuities in rock mass, the blasting patterns and drilling conditions, have been studied. The range of DRZ can be estimated by relationships between vibration velocity and associated tensile stress. A new computerized rocket jumbo drill has been adopted to reduce overbreak based on the analysis of drilling accuracy. In-situ blasting tests were also performed by varying initiating systems. Overbreak can be reduce from 34.5cm to 20cm. The range of DRZ is 0.2m with stoping holes and 0.4m with wall holes respectively. In addition, some methods to reduce DRZ have been presented in this study.

  • PDF

서울지하철 3,4호선 Tunnel 굴착과 진동대책 조사연구(1)

  • Heo, Jin
    • Journal of the Korean Professional Engineers Association
    • /
    • v.15 no.2
    • /
    • pp.3-15
    • /
    • 1982
  • The study on prevention measures for vibration and excavation of tunnel for the #3, #4, Seoul Subway. In the Seoul subway tunnel blasting, the drilling pattern and prevention method to seismic vibration are as follows as well as for adaptions of NATM, the supportings of roof and wall holes are arranged with control blasting. 1. The blasting is executed basically using the low velocity explosive such as slurry, Nitrate ammonium explosive, and F-I and F-II explosive for control blasting substituting of existing dynamite. 2. The cut holes are arranged with burn cut pattern and also must be arranged with M/S electrical delay caps substituting of ordinary do]ay caps. 3. Jack leg drills are used in Five Job sites and a jumbo drill in one job site. 4. In performance of safety work and in maintenance of building safety. The drilling length for blasting will not exceed 1.20 meter for round so that the vibration value shall carry below 0.3cm/sec. The harmonizing of better powder, better drilling machine and better technique is only the way of improving tunnelling efficiency and less vibration will help the dereasing of accidence.

  • PDF

Numerical Modelling of Tunnel Blasting (터널발파의 수치해석적 모델링)

  • 이인모;최종원;김상균;김동현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.133-140
    • /
    • 2000
  • Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.

  • PDF

A Study on the Drilling Methods to reduce Overbreak in Tunnel Blasting (터널발파 작업시 여굴 저감을 위한 천공방법 연구)

  • 김양균;김형철;유정훈
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • Overbreak or underbreak is one of the most important factors in evaluating the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and drilling conditions, has been a target of challenge to many blasting engineers because it directly affects construction cost. Drilling is generally known as one of the primary factors to generate overbreak. This study presents a real working model to reduce overbreak based on the analysis of drilling accuracy and overbreak generated from various working methods related to drilling. As the first step of the study, 45 experiments have been performed. The factors investigated are: marking contour line, the position of perimeter holes, the change of look-out with drilling rig position, and the proper space between perimeter holes. It is concluded that workers and engineers' will and efforts are the most important factors to reduce overbreak and that improving drilling method and pattern could reduce overbreak to a considerable amount.

A Study on Overbreak Control Methods by Evaluating Drilling Conditions in Tunnel Blasting (터널발파시 천공상태 평가를 통한 여굴 저감방안 연구)

  • Kim, Yang-Kyun;Kim, In-Ho;Yoo, Joung-Hoon;Kim, Seong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.198-209
    • /
    • 2005
  • Overbreak or underbreak is one of the most important factors in evaluation the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and the method and condition of drilling, has been a target of challenge to many blasting engineers as it is connected with economic directly. Drilling is generally known as a primary one of overbreak producing factors. So, This study presented the practical solution to reduce overbreak, which was caused by drilling, through the analyses of how to make a drilling process accurate and how to evaluate the effect of each drilling method. Thus, this solution would give a quantitative analysis of overbreak and provide the information of how to reduce the quantity of overbreak. Moreover, for verifying this solution, we applied it to a tunnel project and then have found out that the quantity of overbreak decreased to approximately 10-40% compared with the previous way of overbreak control.

  • PDF