• Title/Summary/Keyword: drift effect

Search Result 419, Processing Time 0.048 seconds

Effect of Particles Drift on Dendritic Growth

  • Park, Min Sik;Im, Dongmin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.53-57
    • /
    • 2014
  • With the use of diffusion-limited aggregation modeling, we have investigated the effect of particle drift for dendritic growth. It is found that the morphology of dendritic growth is sensitive to the particle drift, i.e., the larger drift effect results in the denser growth of dendrite. From the analysis using the correlation function, we found the fractional dimension of each dendrite increases as the particles drift increases. Furthermore, we showed the height of dendrite significantly decrease for the slight change of particles drift. Finally, we discussed the strategy to reduce dendritic growth by modifying the transport properties of electrolytes.

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

Gyro Drift Model Using Structure Function and Effect on Control System Performance (Structure Function을 사용한 Gyro Drift의 등가모델과 제어시스템에 끼치는 영향의 연구)

  • Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 1989
  • This paper addresses modeling of the gyro drift by using the structure function approach which has been originally developed for characterization of the oscillator phase noise. It is shown that by using this approach, an arbitrary order of random and deterministic gyro drift processes can be characterized and easily measured. The relationship between the drift power spectral density and structure function is clarified. It is also shown that this approach simplifies analysis of the effect of drift on the control system performance.

  • PDF

An Effect of Drift Current on Generation Stage of Wind Waves (風波發생에 있어서 吹送流의 影響)

  • Choi, In june
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.195-199
    • /
    • 1984
  • Effect of drift current on the first stage of wave generation by wind is studied theoretically. The viewpoint is similar to the one described by Phillips (1957) except that drift current is considered. It is found that inclusion of the effect of the drift current modifies significantly the results obtained by Phillips, particularly the resonance condition and wave spectrum.

  • PDF

Statistical evaluation of drift demands of rc frames using code-compatible real ground motion record sets

  • Kayhan, Ali Haydar;Demira, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.953-977
    • /
    • 2016
  • Modern performance-based design methods require ways to determine the factual behavior of structures subjected to earthquakes. Drift ratio demands are important measures of structural and/or nonstructural damage of the structures in performance-based design. In this study, global drift ratio and interstory drift ratio demands, obtained by nonlinear time history analysis of three generic RC frames using code-compatible ground motion record sets, are statistically evaluated. Several ground motion record sets compatible with elastic design spectra defined for the local soil classes in Turkish Earthquake Code are used for the analyses. Variation of the drift ratio demands obtained from ground motion records in the sets and difference between the mean of drift ratio demands calculated for ground motion sets are evaluated. The results of the study indicate that i) variation of maximum drift ratio demands in the sets were high; ii) different drift ratio demands are calculated using different ground motion record sets although they are compatible with the same design spectra; iii) the effect of variability due to random causes on the total variability of drift ratio demands is much larger than the effect of variability due to differences between the mean of ground motion record sets; iv) global and interstory drift ratio demands obtained for different ground motion record sets can be accepted as simply random samples of the same population at %95 confidence level. The results are valid for all the generic frames and local soil classes considered in this study.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

The Effect of The Drift Velocity on The Ship Motion (표류(漂流)를 고려한 선체운동(船體運動))

  • J.H.,Hwang;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide (C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구)

  • Choi, Yong-Ho;Lee, Heon-Yong;Kim, Jee-Gyun;Kim, Jung-Woo;Kim, Yoo-Kyuong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF