• Title/Summary/Keyword: drainage ratio

Search Result 386, Processing Time 0.036 seconds

Behavior of the Dissolved and Particulate Nutrient at Paddy Field Area (광역논에서의 용존성과 입자성 영양물질의 거동 특성)

  • Oh, Seung Young;Kim, Jin Soo;Jung, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.543-546
    • /
    • 2004
  • Nutrients behavior were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001\~2003$. The average concentration of TN, TDN and TDP in drainage water was higher than that in irrigation water. On the other hand, the average concentration TP in irrigation water was higher than in drainage water. The ratio of TDN to TN accounted (or over $90\%$ and the ratio of TDP to TP accounted for $50\~70\%$. Especially the ratio of TDP to TP in drainage water was higher than that in irrigation water, suggesting that much of particulate component was reduced due to sedimentation and adsorption in paddy fields plots. Overall, particulate phosphorus usually account for 44 to $77\%$ of tile total phosphorus during storm events.

  • PDF

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.

Comparison of Growth Characteristics and Ginsenoside Contents by Drainage classes and Varieties in 3-Year-Old Ginseng (Panax ginseng C. A. Meyer) (논토양 배수등급 및 품종별 3년생 인삼의 생육과 진세노사이드함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Yeon, Byeong-Yeol;Hyun, Dong-Yun;Kim, Yong-Burm;Kang, Seung-Won;Kim, Young-Churl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.346-351
    • /
    • 2009
  • To study the optimal cultivation for paddy soil, growth characteristics and ginsenoside content was investigated by both of poor drainage class (PDC) and imperfect drainage class (IDC) in three-year-old ginseng of varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS), and Jakyeongjong (JK). Root yield of IDC was higher than that of PDC by 3.6 times because stem length, leaf area, and chlorophyll contents were increased, while discolored leaf ratio was decreased. Root yield of HS in PDC was highest among four varieties because chlorophyll contents, leaf area, and survived plant ratio were relatively high. Root yield of CP in IDC was highest among four varieties because of high leaf area and survived plant ratio, and low discolored leaf ratio. Ratio of rusty-colored root showed significant difference by varieties, which was the highest in HS and the lowest in CP among four varieties irrespective of drainage classes. Total ginsenoside contents showed significant difference by drainage classes, which were high in IDC of good growth and low in PDC of poor growth. Total ginsenoside contents were high in JK and CP, while low in HS and YP both of drainage classes.

Simple Determination Method on Optimal Dosage of Polymer for Papermaking Wastewater Treatment (제지폐수처리의 고분자 응집제 주입량 간이 결정법)

  • Cho, Jun-Hyung;Kang, Mee-Ran;Jin, Hai-Lan
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.85-90
    • /
    • 2014
  • Dewaterability, one of the important properties of wastewater sludge, was investigated using a simple capillary suction time (CST) measurement method. CST and SRF have a very close co-relation. It was convinced that CST method was quite effective, and compensating the time-consuming SRF of conventional drainage measuring method. It turned out that one could use the results of CST to find optimum flocculants ratio to improve drainage in wastewater treatment for the tissue paper production at a mill. Since the optimum ratio of flocculants could be determined with the value of CST and COD removal efficiency could be improved with precise ratio of flocculants. Thus, using CST for determining the optimum ratio of flocculants could be economical by reducing the amount of flocculants. Dewaterability might be measured within several seconds using the values of CST in a precise way. The dewaterability could also be useful in investigating the optimum ratio of flocculants.

A Study on the Effect Factor to the Foam Generating Characteristics of High Expansion Foam (고팽창포소화약제 발포특성에 영향을 미치는 요인 연구)

  • Oh, Kyu-Hyung;Lee, Sung-Eun;In, Se-Jin;Lee, Man-Su
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.83-89
    • /
    • 2008
  • Using the high expansion foam generator of ISO 7203-2 which spray 6 liter at 5 bar, foam generation characteristics was studied. Wind flow rate, foam screen, concentration of foam agent solution and concentration of salt of water were varied to find the effect of the parameters on foam generation. Research result showed that expansion ratio of foam was increased with wind flow rate. The expansion ratio of foam in the perforated type standard screen was higher than the wire mesh screen. Expansion ratio and drainage time were increased with increase of foam solution concentration. But a increase of salt concentration in solution showed the decrease of expansion ratio and drainage time.

On the Planning of Drainage Structures in Irrigation Channels. -Special Emphasis on the Drainage Inverted Siphon- (용수로상의 배수구조물계획에 대하여 -배수잠관을 중심으로-)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2078-2083
    • /
    • 1970
  • The purpose of this study is to give the data neccesary for improving the planning of drainage structures, specially inverted siphons, in irrigation channels. With the samples of 15 drainage inlets, one drainage flume, 16 drainage inverted siphons and 6 drainage culverts in the 3 lines of irrigation channel under Chong-Won Irrigation Association, author abtained the following results. 1. It is presumed that design drainage discharge should be determined with some additional reserves, on the basis of the maximum rainfall intensity in local area and the size of drainage area on the topographical map, avoiding the way of eye measure. 2. Location of drainage inlet should be kept away from the place where topography can make lots of wash load, but when unavoidably allowing the inflow into irrigation channel, wash load outlet with even the purpose of drainage, or drainage flume in stead of drainage inlet should be taken account of. 3. It is presumed that drainage flume may be the structure which can perform its function from a structural point of view as far as topography permits. 4. Drainage inverted siphon should be avoided at any place as much as possible; a) In case that location of the siphon would be permitted only at paddy field, drainage area hauing the amount of discharge which requires more than 90cm in diameter could only be allowed. b) In this case, crest elevation of the tank of both inlet and outlet, at least, should not be lower than the surface level of paddy field. c) As far as topography and stratum permit, ratio of depth of outlet tank to head drop should be decreased as much as possible so that discharging efficiency of wash load could increase. d) In case of avoiding the setting of the siphon, irrigation aqueduct, irrigation inverted siphon, or drainage flume should be recommended in accordance with topography. 5. Discharging capability of wash load by drainage culvert appeared to depend hardly upon the diameter of the culvert, but greatly upon the location, specially near village, for there stones and dirts dumped may considerably be piled up. So, a counter plan for that is required.

  • PDF

Coagulation Treatment of Landfill Leachate Using Acid Mine Drainage(AMD) (산성폐광폐수를 이용한 매립지 침출수의 응집처리)

  • 최봉종;이승목;이상호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.129-133
    • /
    • 2000
  • The objective of this study was to invetigate the coagulation effects of landfill leachate by using Acid Mine Drainage(AND). The coagulation efficiency was investigated by mixing landfill leachate with F $e^{+3}$ solution earned by oxidation of pyrite(AMD). In the results of this experiment, it was found that the amount of removed COD and SS was approximately 30% respectively by mixing at the ratio of AMD three to leachate one. And it showed highest turbidity removal efficiency at all mixing ratio. Concentration of Fe was decreased with increasing mixing ratio, however it was increased inversely at mixing ratio 4. Optimal mixing ratio was 3 at the results obtained by leachate coagulation experiments. Also removal efficiency at mixing ratio 3 corresponded to 500mg/$\ell$ of FeC $l_3$ dosage. it was suggested that pretreatment by mixing of AMD and leachate remove both suspended organic material of leachate and metal of AMD.

  • PDF

Closed-Suction Drainage and Cerebrospinal Fluid Leakage Following Microvascular Decompression : A Retrospective Comparison Study

  • Kim, Young-Hoon;Han, Jung Ho;Kim, Chae-Yong;Oh, Chang Wan
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Objective : We performed this study to investigate whether the use of closed-suction drainage following microvascular decompression (MVD) causes cerebrospinal fluid (CSF) leakage. Methods : Between 2004 and 2011, a total of 157 patients with neurovascular compression were treated with MVD. MVD was performed for hemifacial spasm in 150 (95.5%) cases and for trigeminal neuralgia in 7 (4.5%) cases. The mean age of the patients was $49.8{\pm}9.6$ years (range, 20-69). Dural substitutes were used in 44 (28.0%) patients. Ninety-two patients (58.6%) were underwent a 4-5 cm craniotomy using drainage (drainage group), and 65 (41.4%) did a small 2-2.5 cm retromastoid craniectomy without closed-suction drainage (no-drainage group). Results : Eleven (7.0%) patients experienced CSF leakage following MVD based on the criteria of this study; all of these patients were in the drainage group. In the unadjusted analyses, the incidence of CSF leakage was significantly related with the use of closed-suction drainage following MVD (12.0% in the drainage group vs. 0% in the no-drainage group, respectively; p=0.003; Fisher's exact test). Those who received dural substitutes and the elderly (cut-off value=60 years) exhibited a tendency to develop CSF leakage (p=0.075 and p=0.090, respectively; Fisher's exact test). In the multivariate analysis, only the use of closed-suction drainage was significantly and independently associated with the development of CSF leakage following MVD (odds ratio=9.900; 95% confidence interval, 1.418 to infinity; p=0.017). Conclusion : The use of closed-suction drainage following MVD appears to be related to the development of CSF leakage.

The Treatment of Acid Mine Drainage - The removal of Iron(Fe) component- (자력에 의한 산성 광산 배수의 처리 - 철(Fe) 성분의 제거-)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.21-27
    • /
    • 2012
  • The characteristics of floc formation of the iron(Fe) ions contained in the acid mine drainage was studied for developing the process treating the acid mine drainage. The iron(Fe) ions were formed into flocs by the acid-base reaction with the added $Ca(OH)_2$. The molal ratio of iron(Fe) vs $Ca(OH)_2$ was one of major control variables in treatment; pH change, iron(Fe) ions concentration in treated drainage, DO (dissolved oxygen content). In addition, the air gave much effect on the color of the $iron(Fe)-Ca(OH)_2$ flocs and the attachment to magnet. The attaching to the magnet of the flocs formed in the air was much less than the case without air.

  • PDF

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.