• Title/Summary/Keyword: drainage performance

Search Result 224, Processing Time 0.026 seconds

Development of Expert system for Plant Construction Project Management (플랜트 건설 공사를 위한 사업관리 전문가 시스템의 개발)

  • 김우주;최대우;김정수
    • Journal of Information Technology Application
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2000
  • Project management in the Construction field inherently has more uncertainty and more risks relative to ones from other area. This is the very reason for why project management is recognized as the important task to construction companies. For getting better performance in the project management, we need a system that keeps the consistencies in a automatic or semi-automatic manner through the project management stages like as project definition stage, project planning stage, project design and implementation stage. But since the early stages such as definition and planning stages has many unstructured features and also are dependent to unique expertise or experience of a specific company, we have difficulty providing systematic support for the task of these stages. This kind of problem becomes harder to solve especially in the plant construction domain that is our target domain. Therefore, in this paper, we propose and also implement a systematic approach to resolve the problem mentioned for the early project management stages in the plant construction domain. The results of our approach can be used not only for the purpose of the early project management stages but also can be used automatically as an input to commercial project management tools for the middle project management stages. Because of doing in this way, the construction project can be consistently managed from the definition to implementation stage in a seamless manner. For achieving this purpose, we adopt knowledge based inference, CBR, and neural network as major methodologies and we also applied our approach to two real world cases, power plant and drainage treatment plant cases from a leading construction company in Korea. Since these two application cases showed us very successful results, we can say our approach was validated successfully to the plant construction area. Finally, we believe our approach will contribute to many project management problems from more broader construction area.

  • PDF

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

Evaluation of effectiveness of Smart Water City in Korea - Smart Water City project in Paju City, Gyeonggi Province (한국 스마트워터시티의 효과성 평가 - 경기도 파주시 스마트워터시티 사업을 중심으로)

  • Lee, Yookyung;Lee, Seungho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.813-826
    • /
    • 2020
  • This study analyzes the effects of the Smart Water City (SWC) project that was introduced from 2014 to 2016 in Paju City, Gyeonggi Province, Korea, focusing on the achievement of the business goals. The SWC is referred to as a city that embraces a healthy water supply system based on Smart Water Management (SWM) that promotes the efficiency of water management by combining Information and Communication Technologies (ICTs) with water and sewerage facilities. In order to evaluate the effectiveness of the SWC project, this study deploys evaluation criteria corresponding to the project objectives, and analyzes the outputs before and after the project. The results show that the SWC has contributed to enhancing water supply services and the reliability and drinking rate of tap water. Specific improvement areas include the rise of average water flow rate and water leakage reduction, the diffusion of water quality monitoring system, and the reduction of floating particle concentration and turbidity in drainage pipes was achieved. These were possible because of specific implementation plans for clear goal setting and achievement and active services for citizens. The data related to water quantity and quality showed improved performance compared to before the introduction of SWMS, which is a positive effect. However, a quantitative analysis of the outputs has limitations in identifying other external factors that have led to the changes. In the future, guidelines for spreading SWC and more comprehensive and specific evaluation indicators for SWC should be prepared, and SWMS should be developed in consideration of the needs of users.

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 2. 불확실성 분석에 의한 최적모형의 구축)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.89-99
    • /
    • 2007
  • Uncertainty analysis is used to eliminate the climatic variables of input nodes and construct the model of an optimal type from COMBINE-GRNNM-GA(Type-1), which have been developed in this issue(2007). The input variable which has the lowest smoothing factor during the training performance, is eliminated from the original COMBINE-GRNNM-GA (Type-1). And, the modified COMBINE-GRNNM-GA(Type-1) is retrained to find the new and lowest smoothing factor of the each climatic variable. The input variable which has the lowest smoothing factor, implies the least useful climatic variable for the model output. Furthermore, The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. The optimal COMBINE-GRNNM-GA(Type-1) is developed to estimate and calculate the PE which is missed or ungaged and the $ET_r$ which is not measured with the least cost and endeavor Finally, the PE and $ET_r$. maps can be constructed to give the reference data for drought and irrigation and drainage networks system analysis using the optimal COMBINE-GRNNM-GA(Type-1) in South Korea.

A study on the design of tunnel lining insulation based on measurement of temperature in tunnel (터널 온도계측을 통한 라이닝 단열 설계에 관한 연구)

  • Kim, Dea-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.319-345
    • /
    • 2011
  • In case of tunnels in cold regions, a freeze of groundwater around tunnel may act as a barrier of tunnel drainage in winter, or may cause the inner extrusion of lining. In spite of that, a design of insulation for preventing the frost damage of tunnel lining has not been introduced in Korea, while foreign countries such as Norway and so on have a standard on insulation. In this study, a few freezing cases of road tunnels have been reviewed, and the results show that the freezing protection is necessary. In order to characterize the thermal distribution in the tunnel, following measurements have been performed at Hwa-ak tunnel; the temperature distribution by longitudinal lengths, the internal temperature of lining and the temperature distribution of the ground under pavement. From these measurements, the characteristics of the tunnel's internal temperature distribution due to temperature change in the air has been analyzed. Based on the measurement results on the temperature distribution at Hwa-ak tunnel, thermal flow tests on the rock specimen with and without insulation have been performed in the artificial climate chamber to investigate the performance of the insulation. Also, a number of 3D numerical analyses have been performed to propose appropriate insulation and insulation thicknesses for different conditions, which could prevent the frost damage of tunnel lining. As a result of the numerical analysis, air freezing index of 291$^{\circ}C{\cdot}$ Hr has been suggested as the threshold value for freezing criteria of groundwater behind the tunnel lining.

Development of Flood Rapid Defense System(FRDS) suitable for Southeast Asian Disaster (동남아시아 재난에 적합한 도심형 홍수임시차수시스템 개발)

  • Jung, In-Su;Oh, Eun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.8-17
    • /
    • 2018
  • A large urban region in Bangkok, Thailand is often inundated due to shallow water floods along the paved roads that have poor drainage facilities, and that can cause urban flooding. Existing methods, including using sand bags are not effective to prevent flooding in urban areas where the amount of sand is not sufficient. Thus, it is necessary to install artificial flood defense structures. However flooding and overflow defense equipment, which was developed in some advanced nations in Europe and in the USA, is highly expensive and complex construction methods are needed, therefore they are not suitable to be used in Southeast Asia. Thus, it is necessary to develop a flood rapid defense system(FRDS), which is inexpensive and simple to build, but is also highly functional. Thus, this study developed an FRDS that can be applied to Southeast Asia through the careful study of FRDS overviews, an analysis on the development trends in Korea and overseas, and the proposal of development needs and directions of the region. For the system developed, Korean Standards(KS) performance evaluations on leakage ratio deformation tests and impact resistance tests were conducted at the Outdoor Demonstration Test Center(Seosan) in the Korea Conformity Laboratories(KCL) and the system satisfied the standards of KS F 2639(leakage and deformation test) and KS F 2236(impact resistance test). The present study results can not only be applied to urban floods in Southeast Asian nations to cope with flood-related disasters, but also be utilized in flood prone regions and for major facilities in Korea. They can also induce scientific and pro-active responses from major local governments and facility management organizations in relation to urban floods.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Effects of soaking on a lime stabilized clay and implications for pavement design

  • Bozbey, Ilknur;Kelesoglu, M. Kubilay;Oztoprak, Sadik;Komut, Muhammet;Comez, Senol;Ozturk, Tugba;Mert, Aykan;Ocal, Kivilcim
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-127
    • /
    • 2021
  • This paper investigates the effects of soaking on a lime stabilized high plasticity clay and evaluates the implications for pavement design. In this context, the soil was stabilized by 4%, 6% and 9% hydrated lime. The soil was pulverized in two different gradations so that representative field gradations could be simulated. Both soil pulverization levels passed the relevant field gradation criteria. Curing durations were chosen as 7 days, 28 days and 56 days. Two groups of samples were prepared and were tested in unconfined compression test apparatus to measure the strength and secant modulus at failure values. One of the groups was tested immediately after curing. The other group of samples were first cured and then subjected to soaking for ten days before testing. Visual observations were made on the samples during the soaking period. The results showed the superiority of fine soil pulverization over coarse soil pulverization for unsoaked conditions in terms of strength and modulus values. Soaking of the samples affected the unconfined compressive strength and modulus values based on lime content, curing duration and soil pulverization level. In soaked samples, fine soil pulverization resulted in higher strength and modulus values compared to coarse soil pulverization. However, even with fine soil pulverization, effects of soaking on modulus values were more significant. A new term named as "Soaking Influence Factor (SIF)" was defined to compare the reduction in strength and modulus due to soaking. The data was compared with the relevant design guidelines and an attempt was made to include Soaking Influence Factors for strength and modulus (SIFS and SIFM) into pavement design processes. Two equations which correlated secant modulus at failure to unconfined compressive strength were proposed based on the samples subjected to soaking. The results of this study showed that in order to decrease the diverse effects of soaking for lime stabilized soils, soil pulverization level should be kept as fine as possible in the field. Importance of proper drainage precautions in the pavements is highlighted for better performance of the pavements.

Research on Real-time Flow Rate Measurement and Flood Forecast System Based on Radar Sensors (레이다 센서 기반 실시간 유량 측정 및 홍수 예측 시스템 연구)

  • Lee, Young-Woo;Seok, Hyuk-Jun;Jung, Kee-Heon;Na, Kuk-Jin;Lee, Seung-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.288-290
    • /
    • 2022
  • As part of the SOC digitization for smart water management and flood prevention, the government reported that automatic and remote control system for drainage facilities (180 billion won) to 57% of national rivers and established a real-time monitoring system (30 billion won). In addition, they were also planning to establish a smart dam safety management system (15 billion won) based on big data at 11 regions. Therefore, research is needed for smart water management and flood prevention system that can accurately calculate the flow rate through real-time flow rate measurement of rivers. In particular, the most important thing to improve the system implementation and accuracy is to ensure the accuracy of real-time flow rate measurements. To this end, radar sensors for measuring the flow rate of electromagnetic waves in the United States and Europe have been introduced and applied to the system in Korea, but demand for improvement of the system continues due to high price range and performance. Consequently, we would like to propose an improved flow rate measurement and flood forecast system by developing a radar sensor for measuring the electromagnetic surface current meter for real-time flow rate measurement.

  • PDF

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.