• Title/Summary/Keyword: drag optimization

Search Result 134, Processing Time 0.023 seconds

Optimization of drag reduction effect of air lubrication for a tanker model

  • Park, Seong Hyeon;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • The reduction of $CO_2$ emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Air layer is formed by the coalescence of the injected air bubbles beyond a certain air flow rate. In this study, a model ship (${\lambda}=33.33$) of a 50,000 ton medium range tanker is equipped with an air lubrication system. The experiments were conducted in the 100 m long towing tank facility at the Pusan National University. By selecting optimal air injector configuration and distribution ratio between two injectors, the total resistance of model $R_{TM}$ was able to be reduced down to 18.1% in the model scale. Key issue was found to suppress the sideway leakage of injected air by appropriate injection parameters.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(3) -Construction of the Formulation for True Newton Method and Application to Viscous Drag Reduction of Three-Dimensional Flow (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(3) - 트루 뉴턴법을 위한 정식화 개발 및 유체의 3차원 최적 엑티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • We have developed several methods for the optimization problem having large-scale and highly nonlinear system. First, step by step method in optimization process was employed to improve the convergence. In addition, techniques of furnishing good initial guesses for analysis using sensitivity information acquired from optimization iteration, and of manipulating analysis/optimization convergency criterion motivated from simultaneous technique were used. We applied them to flow control problem and verified their efficiency and robustness. However, they are based on quasi-Newton method that approximate the Hessian matrix using exact first derivatives. However solution of the Navier-Stokes equations are very cost, so we want to improve the efficiency of the optimization algorithm as much as possible. Thus we develop a true Newton method that uses exact Hessian matrix. And we apply that to the three-dimensional problem of flow around a sphere. This problem is certainly intractable with existing methods for optimal flow control. However, we can attack such problems with the methods that we developed previously and true Newton method.

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.

Optimal Swimming Motion for Underwater Robot, Crabster (수중유영로봇 Crabster의 최적 유영 구현)

  • Kim, Daehyun;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

Preliminary Design for Axisymmetric Supersonic Inlet using Conical Flow Solution and Optimization Technique (원추 유동 해와 최적화 기법을 이용한 축대칭 초음속 흡입구의 예비 설계)

  • 정석영
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.11-19
    • /
    • 2006
  • Design program was developed to determine the external shape of the supersonic axisymmetric inlet by combining conical flow solver and approximation technique of conical shock with gradient-based optimization algorithm. Inlet designs were carried out under various operation conditions through optimization with respectively two object functions which consist of pressure recovery and cowl drag and with constraints about shock position, cowl shape, and minimum throat area. New object function consisting of pressure recovery and drag of the external cowl was proposed and the optimized shapes from new object function were compared to the ones from the old object function which maximize only the pressure recovery. Through computations of inviscid and turbulent flow, was tested performance of the design program and performance estimated in design program agreed well with computation results for inlets designed under various flight conditions.

Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology

  • Byun, Wan-Il;Kim, Min-Ki;Park, Kook-Jin;Kim, Seung-Jo;Chung, Min-Ho;Cho, Jin-Yeon;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-285
    • /
    • 2011
  • The supercavitating vehicle is an underwater vehicle that is surrounded almost completely by a supercavity to reduce hydrodynamic drag substantially. Since the cruise speed of the vehicle is much higher than that of conventional submarines, the drag force is huge and a buckling may occur. The buckling phenomenon is analyzed in this study through static and dynamic approaches. Critical buckling load and pressure as well as buckling mode shapes are calculated using static buckling analysis and a stability map is obtained from dynamic buckling analysis. When the finite element method (FEM) is used for the buckling analysis, the solver requires a linear static solver and an eigenvalue solver. In this study, these two solvers are integrated and a consolidated buckling analysis module is constructed. Furthermore, Particle Swarm Optimization (PSO) algorithm is combined in the buckling analysis module to perform a design optimization computation of a simplified supercavitating vehicle. The simplified configuration includes cylindrical shell structure with three stiffeners. The target for the design optimization process is to minimize total weight while maintaining the given structure buckling-free.

Trajectory Optimization for Underwater Gliders Considering Depth Constraints (수심 제한을 고려한 수중 글라이더 경로 최적화)

  • Yoon, Sukmin;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • In this study, the problem of trajectory optimization for underwater gliders considering depth constraints is discussed. Typically, underwater gliders are controlled to dive and climb in a saw-tooth pattern at constant gliding angles. This approach is effective and close to optimal for deep water applications. However, the optimal path deviates from the saw-tooth path in shallow water conditions. This study focuses on finding more efficient gliding paths that can minimize the traverse time in the horizontal plane when the water depth is limited. The trajectory optimization problem is formulated into a minimum time control problem with inequality path constraints and hydrodynamic drag effects. A numerical approach based on the pseudo-spectral method is adopted as a solution approach, and the simulation results are presented.