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Optimal Active-Control & Development of Optimization
Algorithm for Reduction of Drag in Flow Problems(3)

- Construction of the Formulation for True Newton Method and Application to
Viscous Drag Reduction of Three-Dimensional Flow
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Abstract

We have developed several methods for the optimization problem having large-scale and highly nonlinear system. First, step by
step method in optimization process was employed to improve the convergence. In addition, techniques of furnishing good initial
guesses for analysis using sensitivity information acquired from optimization iteration, and of manipulating analysis/optimization
convergency criterion motivated from simultaneous technique were used. We applied them to flow control problem and verified their
efficiency and robustness. However, they are based on quasi-Newton method that approximate the Hessian matrix using exact first
derivatives. However solution of the Navier-Stokes equations are very cost, so we want to improve the efficiency of the
optimization algorithm as much as possible. Thus we develop a true Newton method that uses exact Hessian matrix. And we apply
that to the three-dimensional problem of flow around a sphere. This problem is certainly intractable with existing methods for
optimal flow control. However, we can attack such problems with the methods that we developed previously and true Newton
method.
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1. Introduction

We have developed several methods for the opti-
mization problem having large-scale and highly non-
linear system(Bark, 2007). First, step by step me-
thod in optimization process was employed to im-
prove the convergence. In addition, techniques of
furnishing good initial guesses for analysis using
sensitivity information acquired from optimization
iteration, and of manipulating analysis/optimization
convergency criterion motivated from simultaneous
technique were used. We applied them to flow con-
trol problem and verified their efficiency and
robustness.

However, they are based on quasi-Newton method
that approximate the Hessian matrix using exact
first derivatives. However solution of the Navier-
Stokes equations are very cost, so we want to im-
prove the efficiency of the optimization algorithm as
much as possible. Thus we develop a true Newton
method that uses exact Hessian matrix. And we ap-
ply that to the three-dimensional problem of flow
around a sphere. This problem is certainly intract-
able with existing methods for optimal flow control.
However, we can attack such problems with the
methods that we developed previously and true

Newton method.

2. Problem definition

We consider the three-dimensional problem of
flow around a sphere immersed in a stream of fluid.
Our final aim is to reduce the drag force on the
body by controlling the velocities on the surface of
the body. To solve this problem, we use true
Newton method for optimization with the several
techniques that we developed previously.

As an objective function, we will use the rate of
dissipation of energy due to viscosity, which is equ-
ivalent to the drag force on the body, in the case of
an external incompressible Navier-Stokes flow.

Therefore, our optimization problem to be solved

can be expressed as:
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minimize 2qu[D(u) :D(u)ldn (1)

1
subject to —pAutp(u - V)u—;v(v cu)=0 (2

where p is the dynamic viscosity, p is the den-
sity, and u is the flow velocity, & is the penalty
parameter. and D{(u) =(vu+wvuT)}/2. The symbol :

represents the scalar product of two tensors.
3. Optimization

Our optimization problem was expressed equation
(1) and (2). However, it is not straightforward to
apply SQP methods to flow optimization problems.
Therefore we pursued a decomposition of the prob-
lem into the state space and the control space, i.e.
solve the equation (2), at each optimization iter-
ation for the state variables(u) given values of the
control variables(b). Thus, we have eliminated the
state equations, i.e. equation (2), from the con-
straint set, and we have eliminated the state varia-
bles from the set of optimization variables.

Therefore our optimization problem can be simply

expressed as:

minimize 24 | ID(u(b)):Dlu(b)lde 3)

where, D(u(b)) =(vu(b) + vuT(b))/2

Now, the dimension of the optimization problem
is now greatly reduced, and the constraints are
eliminated. As a result of this decomposition, the
state variables become an implicit function of the
control variables, the implicit function being the
flow solution itself. The implicit dependence of state
variables on control variables requires a sensitivity
analysis, to find the derivatives of the objective

function with respect to the control variables.

3.1 First-order sensitivity analysis(Bark,
2007)

Here, we will show how to obtain the gradient of



objective function and constraints with respect to
the control variables, taking into account the im-
plicit dependence of the state variables on the con-
trols through the discrete Navier-Stokes equation.
Let F denote either the objective or a constraint
function. Here, F depends explicitly on the control
variables b as well as implicitly on them through

the state variables u:
F=F(u(b), b) 4)

The relationship between u and b is dictated by
the discrete form of the Navier-Stokes equations,

which we refer to as the state equations:
h(u(b), b) =0 (5)

The total derivative of the objective with respect
to the control variables can be found by applying

the chain rule,

DF _oF  oF du
b b ou b ©)

Here 6F/ob and aF/su can be readily found from
the expression for the discrete form of the objective
function. The only unknown is du/db, but this vec-
tor can be found by applying the implicit function

theorem for the state equations, yielding

Dh b oh du
b b au db 0 (7)

Thus, the sensitivity of the velocity field with re-
spect to control variables can be found by solving

the linear system

sh  du sh
90 db b )

This is a linear system with coefficient matrix
that is just the Jacobian of the state equations with
respect to the state variables, and thus is a compo-
nent of any Newton solver. Therefore, the same lin-
ear solver that is at the heart of the flow simu-
lation is used for sensitivity analysis, with the ex-
ception of the right-hand side vectors.

The matrix of these vectors, sh/ab, can be readily

uhA)

found analytically. It is seen that this first-order
sensitivity analysis requires the solution of a sys—
tem of equations for as many right-hand sides as

there are control variables.

3.2 Construction of the exact Hessian
matrix for true Newton method

In this section, we will present the necessary ex-
pressions for constructing the exact Hessian matrix
of the ohject to develop the true Newton method.

Let's consider the total derivative of the objective

function with respect to the control bariable b

DF_ 8F  oF du

o ou b, Y ©)

i

The objective function is dependent on the state
variables(u) and the control variables(b). However
the gradient of the objective function is dependent
on du/db as well as the state variables(u) and the
control variables(b). Therefore the second derivative
of the objective function with respect to the control

variables bi can be expressed as:

d(du

Dg;  9g; 99, d g, db,

i 09 %0 du O \T] (10)

Db, ob;, ou db; a(du) db;
db,

2

Therefore the Hessian matrix can be obtained by:

g - D'F_ 0 (oF oF du
9o ob\ab, ou  db
O (OF OF duj  du
gulob, ou db| db
2
L0 [oF oF du) du
S duy\ob ou db | dbdb,
db,
_ 62F+8d IF du
~ b ob, db\ du dp
0 [0F\ du oF _du
ddul db, | db; Jdu  dbdb,
0 (oF du} du
guliou db db;
_OF 5 [oF) du, o [oF} du
 obob,  oul\ob;| db  oul\ab;| db

slMMTEDE S =28 X20H ®63(2007.12) 753



=S e

il

O'F du du 9F _du
gul db db; du  dbab,

(11)

Here 9%F/obob;, oF/ou, o/ou(aF/ab), o/ou(aF/ob),
and oF/ou can be easily found analytically. Furth-
ermore, du/db;, du/db; are available from first-order
The remaining unknown 1is

d*u/dbdb;. This is derived below:

sensitivity analysis.

Let us reconsider the implicit function theorem
for the state equations with respect to the control

variables b;:

= — s — =)=t

B 5 ot (12)

The state equations are dependent on the state
variables(u) and the control variables(b). However
the gradient of the these equations is dependent on
not only the state variables(u) and the control vari-
ables(b) but also on du/db. Therefore the second
derivative of the state equations with respect to the

control variables b; can be expressed as:

d du
Dy, ot ot gy o db, |
Db ob;  ou  db; (du) T, (13)
& ’

Taking the derivative of equation (12) with re-

spect to by, and using equation (13), gives:

Dh _ o (oh  sh du
Db Db, ob\ ob,  ou  db,
sh  6h  dul| du
+—(ab+ u'd_bi)'d_bj
6d_(ob_ 0h du) du
P duy\ db Ju db] db,
db, '
_9%m 9 (0h du\ 9 [4h} du
0 b,db; ab du db, dul db | db;
0 [0h du) du, oh du
Gulou db | db; ou  dbdb,
8°h (ah) du (ah) du
" ob00, ou) db, ob\ou| db,
o’n  du du ah &
=0 (14)

o’ db;  db, " db,db,
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Therefore,

+

d*u :_(@)*1 9h  9%h du  du
db, db; ou/ |abob, pu? db; db,

a(ah) du+ (ah).du

ob; ou’  db, ab. ou’  db,

(15)

Here oh/ou(=J) is the Jacobian of the state
equations, and 8°h/abob; 8/ob,(sh/ou), o/8b(sh/ou)

and 8°h/ou” can be readily found analytically. Fur-
du/db; from the

first-order sensitivity analysis. Therefore all quanti-

thermore, we already know du/db;

ties on the right-hand side of (equation) are kno-
wn, and d2U/dbidbj can be readily computed. For-
mally, this requires the solution of a system of
equations for m’ right-hand sides (where m is the
number of control variables), all having the same
coefficient matrix, namely the Jacobian J.

However, note that:

& _ d*u
db, dbj dbjdbi

(16)

so that the Hessian matrix is symmetric. Thus,
only m(m+1)/2 right-hand side solutions are
required. It would appear that only one LU factori-
zation would be required. However, this LU factori-
zation was computed for the first-order sensitivity
expressions. Therefore, no LU factorizations are re-
quired, and (if a direct method is being used) sec-
ond-order sensitivity analysis comes at essentially
no additional cost beyond analysis and first-order
sensitivity.

With the availability of exact curvature in-
formation, we have a true Newton method for opti-
mization and thus we can expect quadratic con-
vergence (to go along with the quadratic con-
vergence for the analysis problem). Although the
expressions for second-order sensitivity are quite
cumbersome, we shall see in the next section that
they are more efficient and they permit us to solve
three dimensional problems, and are thus well-
worth the effort.



3.3 SQP method for solving the optimi-
zation problem using the true New-
ton method

To solve the nonlinear programming problems, the
sequential quadratic programming(SQP) method is
generally regarded as the best method. This method
is based on the iterative formulation and solution of
quadratic programming subproblems, obtains sub-
problems by using a quadratic approximation of the

Lagrangian. That is:
1
minize 5P;€TB(bk7 )P+ VF(b) ',

where Bk is a positive definite approximation of
the Hessian of the Lagrangian function. by repre-
sents the current iterate points. Let px be the sol-
ution of the subproblem. Vf, the gradient of the
objective function, i.e.V/f,_DF/Ib,. A line search is
used to find a new point by+;. where

br+1 = bx + apr  a€(0, 1]

such that a merit function will have a lower
function value at the new point. The augmented
Lagrange function is wused here as the merit
function. When optimality is not achieved, By is up-
dated according to the BFGS formula.

However, we constructed formulations of the ex-
act Hessian matrix for the objective function in this
study. Therefore, we can use the true Newton
method now.

Following is summary of the our optimization

process using true Newton method:

1) do analysis (obtain ux knowing bi solving
equation (2))

2) do first-order sensitivity analysis to get.

3) get the exact Hessian matrix Hj.

4) check convergence criterion : if 1DF/DbJl <,

then terminate: otherwise go to step 5

5) find px by solving

6) by =bytp,

7) go to step 1
4. Numerical Examples

4.1 Comparison between quasi-Newton
and true Newton method by an
infinite cylinder-2D

In the previous paper, we compared our proposed
methods based on quasi-Newton ideas(Bark, 2007).
In this section, we will compare them with the true
Newton method, that uses the exact Hessian in-
formation with the same example(an infinite cylin-
der-2D).

First, we check the convergence rates to make
sure that we are obtaining the rates predicted by
theory. We tested this for Reynolds number 50
problem. Table 1 shows the error in objective as a
function of iteration number. F* implies the value
of the objective function at iteration k&, and F the
optimal value of the objective function. The Me-
thods took respectively 22 and 17 optimization
iterations. From the table we can see the quadratic
convergence in the Newton method beginning at
iteration 13. This is reflected in a doubling of the
number of correct digits in the objective function.
On the other hand, the guasi-Newton method does
not exhibit quadratic convergence-the number of

correct digits is not doubling at each iteration.

Tx=0, V=0
+
N—
S
U=1 pmsd Tx =0
——
V=0 Ty =0
bl
U=Y=0
A £x
Tx=0, V=0 Tx=0, V=0
H L o}
Where UV : Velocities

Tx, Ty : Tractions
r=1/20

Fig. 1 Flow around cylinder-2D
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Table 1 Convergence of objective function

iteration el
quasi-Newton true Newton

1 1.054819945559 1.0564819945559
2 1.001993115835 102.14488238395
3 1.069074860480 36.821083070181
4 0.624116592811 8.871273994225
5 0.771807215336 2.180216446137
6 0.176850308049 0.352447331178
7 0.104132535399 0.065997521112
8 0.062021852623 0.853941779573
9 0.054375192028 0.224662374922
10 0.044056495017 0.101465531176
11 0.034139295156 0.075240322190
12 0.027133988604 0.067200974037
13 0.017465180067 0.029023064229
14 0.010363979280 0.004379458242
15 0.005358094972 0.000091362669
16 0.004469789884 0.000000079406
17 0.003188945188 0.000000000000
18 0.001266680895

19 0.000226711696

20 0.000011248955

21 0.000000447843

22 0.000000000000

Table 2 Number of LU factorizations (Re=500)

by quasi-Newton by true Newton

NA-SQP 401 276
T1-NA-SQP 318 230
T2-NA-SQP 261 139
T3-NA-S5QP 111 74

Table 3 Total CPU time (Re=500)

by quasi-Newton by true Newton

NA-SQP 84.7 68.1
T1-NA-SQP 67.2 61.1
T2-NA-SQP 55.0 40.1
T3-NA-SQP 23.4 19.8

We also applied NA-SQP~T3-NA-SQP in Newton
form for Re=500 problem by step size Re=50.

Tables 2 and Table 3 show the number of LU
factorizations, and CPU time of these methods. We
see an improvement over quasi-Newton methods of
about 40~50% in the number of LU factorizations.
The improvement over quasi-Newton is about 20%
in total CPU time.
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Fig. 2 flow around sphere
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Fig. 3 x-y (x-z) plane

4.2 Flow around a sphere-3D

In this section, we solve the three-dimensional
problem of flow around a sphere (Figure 2). This
problem is certainly intractable with existing meth-
ods for optimal flow control. The methods of this
study make it possible to attack such problems.
Here we model the flow with the steady state
Navier-Stokes equations. Flow around a sphere is
generally considered steady-state until Reynolds
number 130. Therefore we will use Re=130 for our
problem.

We solve only a quarter of the flow domain by
exploiting symmetry about midplanes. A problem
description is shown in Figure 3. Figure 3 shows
the x-y or x—z plane. In the x-y plane, the veloc-
ities in the z direction (w) are zero, and in the x-z
plane, the velocities in the y direction (v) is zero.
Figure 4 shows the y-z section.

The mesh in the x-y plane (or x-z plane) is given
in Figure 5. This mesh appears to be course, but

we found this is sufficient for Re=130. The volume



Fig. 4 y-z plane

IRERER!

Fig. 6 velocity vector without any control

mesh is obtained by rotating the x-y plane about
the x axis, in 9's increments. This gives us a total
of 11 planes. Altogether 4155 nodes and 455 iso-
parametric triquadratic 27-nodes prism elements.
For Gauss-Legendre numerical integration, a 3 x 3 x
3 scheme is used.

Figure 6 shows the velocity vectors around the
sphere without any control. The same flow pattern
occurs on any plane in the x direction, because of
the axisymmetry of the problem. The flow separa-
tion and recirculation behind the cylinder are evi-
dent from the figures.

To apply boundary velocity controls, we choose
six planes by selecting every other planes from x-v
through x-z plane. Three cases are tested. The cas—
es correspond to one, three, and five holes on each

plane. The total number of control variables is 17,

Fig. 7 Optima!l velocity vectors on
plane having holes-case 1

Fig. 8 Optimal velocity vectors on
plane having holes-case 2

Fig. 9 Optimal velocity vectors on
plane having holes-case 3

33, and 65. The locations of the holes are evident
from Figures 7~9.

Figures 7~9 show the optimal velocity vectors on
planes having holes, for each of the three cases.
Figures 10~12 show the optimal velocity vectors on
planes that have no hole. From the figures, Case
1(a single hole on each plane) appears to have a
velocity field closest to potential flow. However,
from Table 4, we see that it has the highest opti-
mal objective function value. Case 3 has the lowest
objective, with Case 2 between. This result is ex—
pected, as we expect better performance from a
large number of suction/injection holes. However,
the flowfields are not as esthetically pleasing as
their two dimensional counterparts. However, the

solutions computed are at least locally optimal with

ro
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Fig. 10 Optimal velocity vectors on
plane do not having holes-case 1

Fig. 11 Optimal velocity vectors on
plane do not having holes-case 2

respect to the dissipation function.

5. Conclusion

We considered the three-dimensional problem of
flow around a sphere immersed in a stream of fluid.
Our final goal was to reduce the drag force on the
body by controlling the velocities by suction and in-
jection on the surface of the body. To solve this
kind of problems, we have proposed several power-
ful methods. They are based on quasi-Newton
method. In this study, we developed a true Newton
method that uses exact Hessian matrix with appli-
cation to the three-dimensional problem of flow
around a sphere. This problem is certainly intract-
able with existing methods for optimal flow control.
We are unaware of any other attempt to solve a
three-dimensional problem. However, we attacked
such problems with the true Newton method includ-
ing the feature of T3-NA-S@P. Although the ex-
pressions for second-order sensitivity are quite cum-
bersome, they are more efficient and they permit us
to solve three dimensional problems, and are thus
well-worth the effort.

In the process of solving three-dimensional prob-
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Fig. 12 Optimal velocity vectors on
plane do not having holes-case 3

Table 4 Optimal objective function values

No control

5.7755

Case 1
1.7299

Case 2
1.5513

Case 3
1.4300

Objective

lem, we encountered a limit of about 13000 state
variables, due to memory. Beyond this size, where
undoubtedly most industrial-scale flow control prob-
lems life, iterative solvers will be required(of

course, we may increase memory more).
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