• Title/Summary/Keyword: double-beam

Search Result 529, Processing Time 0.031 seconds

An atypical case involving real, ghost, and pseudo-ghost images on a panoramic radiograph

  • Jong-Won Kim;Yo-Seob Seo
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • Purpose: This report presents a unique case featuring real, ghost, and pseudo-ghost images on the panoramic radiograph of a patient wearing earrings. It also explains the formation of these images in an easy-to-understand manner. Materials and Methods: One real image and two ghost images appeared on each side of a panoramic radiograph of a patient wearing earrings on both sides. Of the two ghost images on each side, one was considered a typical ghost image and the other was considered a ghost-like real image (pseudo-ghost image). The formation zones of the real, double, and ghost images were examined based on the path and angles of the X-ray beam from the Planmeca ProMax. To simulate the pseudo-ghost and typical ghost images on panoramic radiography, a radiopaque marker was affixed to the right mandibular condyle of a dry mandible, and the position of the mandible was adjusted accordingly. Results: The center of rotation of the Planmeca ProMax extended beyond the jaw area, and the area of double image formation also reached beyond the jaw. The radiopaque-marked mandibular condyle, situated in the outwardly extending area of double image formation, exhibited triple images consisting of real, double (pseudo-ghost), and ghost images. These findings helped to explain the image formation associated with the patient's earrings observed in the panoramic radiograph. Conclusion: Dentists must understand the characteristics and principles of the panoramic equipment they use and apply this understanding to taking and interpreting panoramic radiographs.

Design Formula for the Flexural Strength of a Double Split Tee Connection (상·하부 스플릿 T 접합부의 휨강도 설계식)

  • Yang, Jae-Gue;Kim, Joo-Wo;Kim, Yu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.511-520
    • /
    • 2012
  • The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

Experimental study on seismic behavior of exterior composite beam-to-column joints with large size stiffened angles

  • Wang, Peng;Wang, Zhan;Pan, Jianrong;Li, Bin;Wang, Bo
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • The top-and-seat angles with double web angles are commonly used in the design of beam-to-column joints in Asian and North American countries. The seismic behavior analysis of these joints with large cross-section size of beam and column (often connected by four or more bolts) is a challenge due to the effects from the relatively larger size of stiffened angles and the composite action from the adjacent concrete slab. This paper presents an experimental investigation on the seismic performance of exterior composite beam-to-column joints with stiffened angles under cyclic loading. Four full-scale composite joints with different configuration (only one specimen contain top angle in concrete slab) were designed and tested. The joint specimens were designed by considering the effects of top angles, longitudinal reinforcement bars and arrangement of bolts. The behavior of the joints was carefully investigated, in terms of the failure modes, slippage, backbone curves, strength degradation, and energy dissipation abilities. It was found that the slippage between top-and-seat angles and beam flange, web angle and beam web led to a notable pinching effect, in addition, the ability of the energy dissipation was significantly reduced. The effect of anchored beams on the behavior of the joints was limited due to premature failure in concrete, the concrete slab that closes to the column flange and upper flange of beam plays an significant role when the joint subjected to the sagging moment. It is demonstrated that the ductility of the joints was significantly improved by the staggered bolts and welded longitudinal reinforcement bars.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

An Experimental Study on the Buckling Strength of subject to Asymmetrical Double Curvature Stainless Steel Circular Hollow Section Beam-Columns (비대칭 이중곡률 스테인리스 원형강관 보-기둥의 좌굴내력에 관한 실험적 연구)

  • Jang, Ho Ju;Park, Jae Seon;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2009
  • This study is a series of experimental investigations of the buckling strengths of eccentrically compressed, cold-formed, stainless-steel, circular, hollow-section beam columns. The principal parameters that were used in this study were the slenderness ratios (Lk/r = 30, 50, 70) and the magnitude of eccentricity e(one way: 0, 25, 50, 75, and 100mm: the other way: 0, 12.5, 25, 37.5, and 50mm) on the asymmetrical end-moment of a double curvature. The objectives of the study were to obtain the maximum loads through an experiment and to compare the experimental behaviors with the analysis results. The ultimate buckling strength of the square section members were evaluated using a numerical method, in accordance with the bending moment-axial force(M-P) interaction curves. The behavior of each specimen was displayed in the form of the strength-displacement and moment-angle(M-$\theta$) relationship.

Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames

  • Hu, Yi;Zhao, Junhai;Zhang, Dongfang;Zhang, Yufen
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • This paper aims to assess the seismic risk of a plane moment-resisting frames (MRFs) consisting of concrete-filled double skin steel tube (CFDST) columns and I-section steel beams. Firstly, three typical limit performance levels of CFDST structures are determined in accordance with the cyclic tests of seven CFDST joint specimens with 1/2-scaled and the limits stipulated in FEMA 356. Then, finite element (FE) models of the test specimens are built by considering with material degradation, nonlinear behavior of beam-column connections and panel zones. The mechanical behavior of the concrete material are modeled in compression stressed condition in trip-direction based on unified strength theory, and such numerical model were verified by tests. Besides, numerical models on 3, 6 and 9-story CFDST frames are established. Furthermore, the seismic responses of these models to earthquake excitations are investigated using nonlinear time-history analyses (NTHA), and the limits capacities are determined from incremental dynamic analyses (IDA). In addition, fragility curves are developed for these models associated with 10%/50yr and 2%/50yr events as defined in SAC project for the region on Los Angeles in the Unite State. Lastly, the annual probabilities of each limits and the collapse probabilities in 50 years for these models are calculated and compared. Such results provide risk information for the CFDST-MRFs based on the probabilistic risk assessment method.

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Study on Rib's Structural Details of Double Baseplate Connection Through Numerical Analysis (수치해석을 통한 이중 베이스플레이트 연결부의 리브 구조 상세에 대한 연구)

  • Hwang, Won Sup;Kim, Hee Ju;Ham, Jun Su;Hwang, Seung Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • In this study, steel-pier's structural behavior by design variables of ribs were analyzed in order to improve structural details of ribs supporting double base plates. A numerical analysis was conducted using commercial FE analysis program. Anchor bolts and reinforced bars were made of BEAM element, and coefficient of friction was applied to contact surfaces. After that, the analytical result was compared with experiment of previous study to verify analysis methods. Steel-pier's load-displacement relation was analyzed according to various rib's design variables (rib's central angle, height, thickness) by using proven analysis methods, and proper rib's design ranges were proposed.

Measurement of Neutron Production Double-differential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions

  • Itashiki, Yutaro;Imahayashi, Youichi;Shigyo, Nobuhiro;Uozumi, Yusuke;Satoh, Daiki;Kajimoto, Tsuyoshi;Sanami, Toshiya;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • Background: Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. Materials and Methods: We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. Results and Discussion: Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. Conclusion: PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

Microstructural ananalysis of AlN thin films on Si substrate grown by plasma assisted molecular beam epitaxy (RAMBE를 사용하여 Si 기판 위에 성장된 AIN 박막의 결정성 분석)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • Microstructures of AlN thin films on Si substrates grown by plasma assisted molecular beam epitaxy were analyzed with various growth temperatures and substrate orientations. Reflection high energy electron diffraction (RHEED) patterns were checked for the in-situ monitoring of the growth condition. X-ray diffraction(XRD), double crystal X-ray diffraction (DCXD), and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the microstructure of the films after growth. On Si(100) sub-strates, AlN thin films were grown mostly along the hexagonal c-axis orientation at temperature higher than $850^{\circ}C$. On the other hand the AlN films on Si(111) were epitaxially grown with directional coherencies in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112). The microstructure of AlN thin films on Si(111) substrates, with a full width at half maximum of almost 3000 arcsec at 2$\theta$=$36.2^{\circ}$, showed that the single crystal films were grown, even if they includ a lot of crystal defects such as dislocations and stacking faults.

  • PDF