Microstructural ananalysis of AlN thin films on Si substrate grown by plasma assisted molecular beam epitaxy

RAMBE를 사용하여 Si 기판 위에 성장된 AIN 박막의 결정성 분석

  • Published : 2001.04.01

Abstract

Microstructures of AlN thin films on Si substrates grown by plasma assisted molecular beam epitaxy were analyzed with various growth temperatures and substrate orientations. Reflection high energy electron diffraction (RHEED) patterns were checked for the in-situ monitoring of the growth condition. X-ray diffraction(XRD), double crystal X-ray diffraction (DCXD), and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the microstructure of the films after growth. On Si(100) sub-strates, AlN thin films were grown mostly along the hexagonal c-axis orientation at temperature higher than $850^{\circ}C$. On the other hand the AlN films on Si(111) were epitaxially grown with directional coherencies in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112). The microstructure of AlN thin films on Si(111) substrates, with a full width at half maximum of almost 3000 arcsec at 2$\theta$=$36.2^{\circ}$, showed that the single crystal films were grown, even if they includ a lot of crystal defects such as dislocations and stacking faults.

Plasma assisted molecular beam epitaxy(PAMBE)를 사용하여 Si 기판위에 성장시킨 AlN 박막에 대하여 성장온도 및 기판의 방향성에 따른 박막의 결정성 변화를 분석하였다. Reflection high energy electron diffraction(RHEED) 패턴을 이용하여 성장 중의 결정성을 관찰하였고, 성장 후에는 X-ray diffraction(XRD), double crystal X-ray diffraction(DCXD), transmission electron microscopy/diffraction(TEM/TED)분석을 하였다. $850^{\circ}C$이상의 온도에서 Si(100)위에 성장된 AlN박막은 육방정계의 c축 방향으로 우선 배향되어 있음을 확인하였으며 Si(111)위에 성장된 AlN박막의 경우 AlN(0001)/Si(111), AlN(1100)/Si(110), AlN(1120)/Si(112)의 결정방위를 가지고 성장하였음을 확인하였다. 또한 Si(111) 기판 위에서는 전위와 적층결함 등 많은 결정결함에 의해 DCD패턴의 반치폭이 2$\theta$=$36.2^{\circ}$에서 약 3000arcsec에 이르는 등 결정성은 좋지 않았으나 AlN박막이 단결정으로 성장된 것으로 나타났다.

Keywords

References

  1. J. Vac. Sci. Technol. v.B 10 S. Strite;H. Morococ
  2. Jpn. J. Appl. Phys Part 1 v.32 H. Okano;N. Tanaka;K. Shibata;S. Nakano
  3. Jpn. J. Appl. Phys Part 1 v.31 H. Okano;Y. Takahashi;T. Tanaka;K. Shibata;S. Nakano
  4. Appl. Phys. Lett. v.59 T. Lei;M. Fanciulli;R.J. Molnar;T. D. Moustakas;R.J. Graham;J. Scanlon
  5. Appl. Phys. Lett. v.71 Y. J. Yong;J. Y. Lee;H. S. Kim;J. Y. Lee
  6. J. Appl. Phys. v.85 no.11 G. W. Auner;F. Jin;V. M. Naik;R. Naik