• Title/Summary/Keyword: double point

Search Result 729, Processing Time 0.022 seconds

Output Optimization of Microhydro Kaplan Turbine by Double Regulating Runner and Guide Vane (러너와 가이드 베인의 연동을 통한 마이크로 카프란 수차의 출력 최적화)

  • Park, No-Hyun;Rhee, Young-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Recently so much attention has been focused on renewable energy and, since its sources to exploit are already almost saturated in the country, the practical alternative to this situation could be a micro-turbine which uses the low head and low flow. From a point of view of local micro-turbine design capacity and manufacturing technology, the problems such as the accumulation of technical skills, the expansion of related industries, the national policy expansion and the turbine efficiency to improve are still vulnerable and it's true that there are also negative views about the economic feasibility, the technicity and the operation management of the micro-turbine. However, if the improvement can be done in technology of low-head double regulation micro-turbine to generate more outputs and the operation management can be reliably realized, the micro-turbine will be re-evaluated as an appliable source of renewable energy, even the output is small, and by a paradigm shift, it could realize a power generation as an economic and rational system.

A Study on the Measurement of Vibration Mode Shape using Holographic interferometry (홀로그래픽 간섭법을 이용한 진동모드의 계측에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.130-135
    • /
    • 2000
  • In this study the vibration behavior of the stiffened double cylinder was experimently analyzed. Due to the complex structure of the double cylinder the outside cylinder frequency responses to the exciting forces applied on various posi-tions were analyzed by using spectrum analyzer in conjunction with an accelerometer and the natural frequencies were obtained. The technique of time-averaged holographic interferometry is applied to study the vibration characteristics of outside cylinder with stiffening T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. however the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. However the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame seemed to behave as a transmitter. In addition it has been successfully demon-started that optical method such as holographic interferometry is well suited for the identification of mode shapes. They can give us a whole-field non-contact measurement instead of the point-wise measurement by accelerometer in classical modal testing.

  • PDF

A Study on the Link Composition Design of a Double Link Type Level Luffing Jib Crane (I) (이중 링크 형식 수평 인입 집 크레인의 링크 구성 설계에 관한 연구( I ))

  • Moon, D.H.;Hur, C.W.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • This paper is a study on the link composition design of a double link type level luffing jib crane using path generation synthesis passing through three precision points according to parameters, the length of backstay, the ratio of fly jib length between two moving hinges to the total length of fly jib, the location of a intermediate passing point etc. when the maximum and minimum working radius of the crane are given. The performance of the crane depends on the deviation of the luffing trajectory at fly jib tip. The luffing trajectories according to the above parameters are analyzed and shown in graphs by the developed computer program. In a real-life design, some trials are needed to arrive at a proper link composition design. Therefore, it is expected that the present computer program can rapidly and exactly deal with a link composition design proper to the design criteria of the crane.

  • PDF

Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities- (최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로-)

  • Yang, In-Yeong;Cha, Cheon-Seok;Gang, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.

SOFT TISSUE CHANGES AFTER DOUBLE JAW ROTATION SURGERY IN SKELETAL CLASS III MALOCCLUSION (골격성 III 급 부정 교합자에서 양악 회전 수술 후 연조직 변화에 대한 연구)

  • Jeong, Mi-Hyang;Choi, Jeong-Ho;Kim, Byuong-Ho;Kim, Seong-Gon;Nahm, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.559-565
    • /
    • 2006
  • The aim of this study was to evaluate the amount and interrelationship of the soft and hard tissue changes after simultaneous maxillary clockwise rotation and mandibular setback surgery in skeletal class III malocclusion. The sample comprised of 16 adult patients who had anteroposterior skeletal discrepancy. These patients had received presurgical orthodontic treatment and surgical treatment which consisted of Le fort I Osteotomy and bilateral saggital split ramus osteotomy. The presurgical (T1) and postsurgical (T2) lateral cephalograms were evaluated. The computerized statistical analysis was carried out with SPSS/PC program. The results demonstrated a decrease in the vertical dimension in the soft and hard tissue. The nasolabial angle was increased and the mentolabial angle was decreased. The results showed also many statistically significant correlations(p<0.05). The lower lip closely followed the skeletal movement of the B- point in the horizontal plane. The double jaw rotation surgery can afford a good solution to solve the problems of class III malocclusion cases.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

Numerical Analysis of Temperature Distribution of the Explosive Material in the Double-Layer Liners (이중층 라이너의 폭발 재료 온도 분포 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • The development of new concepts of liner is of great importance to effectively neutralize the enemy's attack power concealed in the protective structure or armored vehicles. A double layer liner has a combination of two different materials, one for penetration of target and the other for explosion after penetration. Therefore, it is of great importance to understand the temperature distribution before impact which should be lower than the explosive temperature of pure explosive material of the liner used. In this study, two different liner materials were obtained using cold spray coating and these material properties were characterized by DSC experiments. Numerical computations were done and the effect of temperature distribution and changes over time at each point of the explosive material depending on the layer types of the liner were discussed and analysed in the jet state.

A Study of Tunnel Entrance Hood Shape of High-Speed Train with Side Running Effect (편측 주행을 고려한 고속철도 터널의 후드 형상에 대한 연구)

  • Kwak, Min-Ho;Ku, Yo-Cheon;Yun, Su-Hwan;Rho, Joo-Hyun;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.483-488
    • /
    • 2009
  • When a train enters into the tunnel with high speed, a compression wave generated inside the tunnel has been studied as a one-dimensional phenomenon. However, one-dimensional approach can't analyze 3-dimensional flow effect in the vicinity of the train body. In this research, so as to overcome this weak point, a prediction method of the wavefront of a compression wave using steady state solution has been used for the parametric study considering 3-dimensional effects of the interactions between trains and tunnels. The effective hood shapes were deduced in both cases of the train's entry into the tunnel on the single track and on a side of the double track. As a result, in case of the train's entry on a side of the double track, the increase of compression wave value propagated to the tunnel inside have appeared compared with the train's entry on the single track. Also, a horizontally convex elliptic hood shape is more effective at the train's entry on a side of the double track for the purpose of a decrease of wavefront gradient of a compression wave.

  • PDF

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.