• 제목/요약/키워드: double mutants

검색결과 77건 처리시간 0.023초

Multiple Residues in the P-Region and M2 of Murine Kir 2.1 Regulate Blockage by External $Ba^{2+}$

  • Lee, Young-Mee;Thompson, Gareth A.;Ashmole, Ian;Leyland, Mark;So, In-Suk;Stanfield, Peter R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.61-70
    • /
    • 2009
  • We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on $Ba^{2+}$ blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary(CHO) cells and used the whole cell patch-clamp technique to record $K^+$ currents in the absence and presence of externally applied $Ba^{2+}$. Wild type Kir2.1 was blocked by externally applied $Ba^{2+}$ in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of $Ba^{2+}$ blockage. The estimated $K_d(0)$ was 108 ${\mu}M$ for Kir2.1 wild type, 124 ${\mu}M$ for a concatameric WT-Y145V dimer, 109 ${\mu}M$ for a WT-Y145L dimer, and 267 ${\mu}M$ for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for $Ba^{2+}$, also showing two components with very different time courses. Mutants D172K and D172R(lining the central, aqueous cavity of the channel) showed both a decreased affinity to $Ba^{2+}$ and a decrease in the on transition rate constant(${\kappa}_{on}$). These results imply that residues stabilising the cytoplasmic end of the selectivity filter(T141, S165) and in the central cavity(D172) are major determinants of high affinity $Ba^{2+}$ blockage in Kir 2.1.

Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

  • Yoon, Jinmi;Cho, Lae-Hyeon;Lee, Sichul;Pasriga, Richa;Tun, Win;Yang, Jungil;Yoon, Hyeryung;Jeong, Hee Joong;Jeon, Jong-Seong;An, Gynheung
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.858-868
    • /
    • 2019
  • Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.

Downregulation of EHT1 and EEB1 in Saccharomyces cerevisiae Alters the Ester Profile of Wine during Fermentation

  • Yang, Xue;Zhang, Xuenan;He, Xi;Liu, Canzhen;Zhao, Xinjie;Han, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.761-767
    • /
    • 2022
  • EHT1 and EEB1 are the key Saccharomyces cerevisiae genes involved in the synthesis of ethyl esters during wine fermentation. We constructed single (Δeht1, Δeeb1) and double (Δeht1Δeeb1) heterogenous mutant strains of the industrial diploid wine yeast EC1118 by disrupting one allele of EHT1 and/or EEB1. In addition, the aromatic profile of wine produced during fermentation of simulated grape juice by these mutant strains was also analyzed. The expression levels of EHT1 and/or EEB1 in the relevant mutants were less than 50% of the wild-type strain when grown in YPD medium and simulated grape juice medium. Compared to the wild-type strain, all mutants produced lower amounts of ethyl esters in the fermented grape juice and also resulted in distinct ethyl ester profiles. ATF2, a gene involved in acetate ester synthesis, was expressed at higher levels in the EEB1 downregulation mutants compared to the wild-type and Δeht1 strains during fermentation, which was consistent with the content of acetate esters. In addition, the production of higher alcohols was also markedly affected by the decrease in EEB1 levels. Compared to EHT1, EEB1 downregulation had a greater impact on the production of acetate esters and higher alcohols, suggesting that controlling EEB1 expression could be an effective means to regulate the content of these aromatic metabolites in wine. Taken together, the synthesis of ethyl esters can be decreased by deleting one allele of EHT1 and EEB1 in the diploid EC1118 strain, which may modify the ester profile of wine more subtly compared to the complete deletion of target genes.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Post-Translational Regulation of the RSF1 Chromatin Remodeler under DNA Damage

  • Min, Sunwoo;Choi, Yong Won;Yun, Hansol;Jo, Sujin;Ji, Jae-Hoon;Cho, Hyeseong
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.127-133
    • /
    • 2018
  • Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.

Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans

  • Kang, Sa-Ouk;Kwak, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.79-91
    • /
    • 2021
  • γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.

진핵세포에서 HSV-1 Envelope 변이 단백질의 발현 및 발현 단백질의 특성 연구 (Expression and Characterization of the Human Immunodeficiency Virus Type 1 Mutant Envelope Glycoproteins in Mammalian Cells)

  • 류지윤;박진서
    • 대한바이러스학회지
    • /
    • 제29권3호
    • /
    • pp.183-193
    • /
    • 1999
  • Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is synthesized as a 160 KDa precursor, gp160, that is cleaved by a cellular protease to form the gp120 and gp41 subunits. Mammalian expression vectors were designed that are capable of efficient expression of various mutant envelope glycoproteins derived from a molecular clone of HIV-1. To construct these vectors, one type of mutation was made at the gp120-gp41 cleavage site by oligonucleotide-directed mutagenesis. And another mutation was made to change amino acids in the membrane spanning region of HIV-1 gp41 important for membrane anchorage. Next, these two mutations were combined to generate a vector to have double mutations in cleavage site and membrane-spanning region. These mutants were transiently expressed in mammalian cells. The effect of these mutations on envelope glycoprotein synthesis, proteolytic processing and secretion was determined. In addition, cell surface expression and ability of the glycoprotein to induce syncytium formation were examined. This study provides a mammalian expression system that is capable of efficient expression and secretion of soluble gp160.

  • PDF

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF

Recombination Activating Gene 1 Product Alone Possesses Endonucleolytic Activity

  • Kim, Deok-Ryong
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.201-206
    • /
    • 2003
  • Two lymphoid-specific proteins, RAG1 and RAG2, are required for the initiation of the V(D)J recombination in vitro. The V(D)J cleavage that is mediated by RAG proteins at the border between the coding and signal sequences results in the production of a hairpin at the coding end and a double-stranded break at the signal end. Two hairpin coding ends are re-opened, modified, and sealed; whereas, the signal ends are directly ligated. Here I report that only RAG1 can carry out a distinct endonucleolytic activity in vitro using an oligonucleotide substrate that is tethered by a short single-stranded DNA. The purified RAG1 protein alone formed a nick at the near position to the recombination signal sequence. This endonucleolytic activity was eliminated by immunoprecipitation using the RAG1-specific antibody, and required the 3'-hydroxy group. All of the RAG1 mutants that were incapable of the nick and hairpin formation in the V(D)J cleavage analysis also showed this new endonucleolytic activity. This suggests that the nicking activity that was observed might be functionally different from the nick formation in the V(D)J cleavage.

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.