Browse > Article

Multiple Residues in the P-Region and M2 of Murine Kir 2.1 Regulate Blockage by External $Ba^{2+}$  

Lee, Young-Mee (Department of Physiology and Biophysics, Seoul National University, College of Medicine)
Thompson, Gareth A. (Department of Cell Physiology & Pharmacology, University of Leicester)
Ashmole, Ian (Department of Biological Sciences, University of Warwick)
Leyland, Mark (Department of Biochemistry, University of L:eicester)
So, In-Suk (Department of Physiology and Biophysics, Seoul National University, College of Medicine)
Stanfield, Peter R. (Department of Biological Sciences, University of Warwick)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.13, no.1, 2009 , pp. 61-70 More about this Journal
Abstract
We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on $Ba^{2+}$ blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary(CHO) cells and used the whole cell patch-clamp technique to record $K^+$ currents in the absence and presence of externally applied $Ba^{2+}$. Wild type Kir2.1 was blocked by externally applied $Ba^{2+}$ in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of $Ba^{2+}$ blockage. The estimated $K_d(0)$ was 108 ${\mu}M$ for Kir2.1 wild type, 124 ${\mu}M$ for a concatameric WT-Y145V dimer, 109 ${\mu}M$ for a WT-Y145L dimer, and 267 ${\mu}M$ for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for $Ba^{2+}$, also showing two components with very different time courses. Mutants D172K and D172R(lining the central, aqueous cavity of the channel) showed both a decreased affinity to $Ba^{2+}$ and a decrease in the on transition rate constant(${\kappa}_{on}$). These results imply that residues stabilising the cytoplasmic end of the selectivity filter(T141, S165) and in the central cavity(D172) are major determinants of high affinity $Ba^{2+}$ blockage in Kir 2.1.
Keywords
Potassium channel; Inward rectifier; Ionic selectivity; Barium blockage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Alagem N, Dvir M, Reuveny E. Mechanism of $Ba^{2+}$ block of a mouse inwardly rectifying $K^+$ channel: differential contribution by two discrete residues. J Physiol 534: 381-393, 2001   DOI   ScienceOn
2 Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner HP, Ruppersberg JP. Strong voltage-dependent inward rectification of inward rectifier $K^+$ channels is caused by intracellular spermine. Cell 80: 149-154, 1995   DOI   ScienceOn
3 Ficker E, Taglialatela M, WIBLE BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier $K^+$ channels. Science 266: 1068-1072, 1994   DOI   PUBMED
4 Hagiwara S, Miyazaki S, Moody W, Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol 279: 167-185, 1978   DOI   PUBMED
5 Hidalgo P, Mackinnon R. Revealing the architecture of a $K^+$ channel pore through mutant cycles with a peptide inhibitor. Science 268: 307-310, 1995   DOI   PUBMED
6 Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE. A novel inward rectifier $K^+$ channel with unique pore properties. Neuron 20: 995-1005, 1998   DOI   ScienceOn
7 Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926, 2003   DOI   PUBMED   ScienceOn
8 Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romely G, Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying $K^+$ channel with a novel structure. EMBO J 15: 1004-1011, 1996   PUBMED
9 Minor DL, Masseling SJ, Jan YN, Jan LY. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891, 1999   DOI   ScienceOn
10 Nishida M, Cadene M, Chait BT, Mackinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26: 4005-4015, 2007   DOI   ScienceOn
11 Shioya T, Matsuda H, Noma A. Fast and slow blockades of the inward-rectifier $K^+$ channel by external divalent cations in guinea-pig cardiac myocytes. Pflügers Arch 422: 427-435, 1993   DOI   ScienceOn
12 Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC. A single aspartate residue is involved in both intrinsic gating and blockage by $Mg^{2+}$ of the inward rectifier, IRK1. J Physiol 478: 1-6, 1994   DOI   PUBMED
13 Lee YM, Yang DK, Ashmole I, Stanfield PR, So I, Kim KW. Residues lining the pore region of the murine inward rectifier $K^+$ channel (KIR2.1) control $K^+$ blockage. Biophysical J 80: 631A, 2001
14 Zhou H, Chepilko S, Schutt W, Choe H, Palmer LG, Sackin H. Mutations in the pore region of ROMK enhance $Ba^{2+}$ block. Am J Physiol 271: C1949-C1956, 1996   DOI
15 Hagiwara S, Yoshii M. Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J Physiol 292: 251-265, 1979   DOI   PUBMED
16 Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15: 1441-1447, 1995   DOI   ScienceOn
17 Leech CA, Stanfield PR. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol 319: 295-309, 1981   DOI   PUBMED
18 Lockless SW, Zhou M, Mackinnon R. Structural and thermodynamic properties of selective ion binding in a $K^+$ channel. PLoS Biology 5: 1079-1088, 2007
19 So I, Ashmole I, Davies NW, Sutcliffe MJ, Stanfield PR. The $K^+$ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. J Physiol 531: 37-50, 2001   DOI   ScienceOn
20 Neyton J, Miller C. Discrete $Ba^{2+}$ block as a probe of ion occupancy and pore structure in the high conductance $Ca^{2+}$ activated $K^+$ channel. J Gen Physiol 92: 569-586, 1988b   DOI   ScienceOn
21 Thompson GA, Leyland ML, Ashmole I, Sutcliffe MJ, Stanfield PR. Residues beyond the selectivity filter of the $K^+$ channel Kir2.1 regulate permeation and block by external $Rb^+$ and $Cs^+$. J Physiol 526: 231-240, 2000a   DOI   ScienceOn
22 Thompson GA, Leyland ML, Ashmole I, Stanfield PR. Residues in H5 and M2 of murine Kir2.1 regulate $Ba^{2+}$ block. J Physiol 526P: 10S, 2000b
23 Dart C, Leyland ML, Barrett-Jolley R, Shelton PJ, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR. The dependence of $Ag+$ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. J Physiol 511: 15-24, 1998   DOI   ScienceOn
24 Lu T, Ting AY, Mainland J, Jan LY, Schultz PG, Yang J. Probing ion permeation and gating in a $K^+$ channel with backbone mutations in the selectivity filter. Nature Neurosci 4: 239-246, 2001   DOI   ScienceOn
25 Standen NB, Stanfield PR. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol 280: 169-191, 1978   DOI   PUBMED
26 Sabirov RZ, Tominaga T, Miwa A, Okada Y, Oiki S. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. J Gen Physiol 110: 665-677, 1997   DOI   ScienceOn
27 So I, Ashmole I, Stanfield PR. The substates with mutants that negatively charged aspartate in position 172 was replaced with positive charge in murine inward rectifier potassium channel (murine Kir2.1). Kor J Physiol Pharmacol 7: 267-273, 2003b   과학기술학회마을   ScienceOn
28 Navaratnam DS, Escobar L, Covarrubias M, Oberholtzer JC. Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier $K^+$ channel cloned from the chick inner ear. J Biol Chem 270: 19238-19245, 1995   DOI   ScienceOn
29 Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, Mackinnon R. The structure of the potassium channel: molecular basis of $K^+$ conduction and selectivity. Science 280: 69-77, 1998   DOI   PUBMED   ScienceOn
30 Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal $Mg^{2+}$. Nature 325: 156-159, 1987   DOI   PUBMED   ScienceOn
31 Heginbotham L, Lu Z, Abramson T, Mackinnon R. Mutations in the $K^+$ channel signature sequence. Biophys J 66: 1061-1067, 1994   DOI   ScienceOn
32 Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A. The epithelial inward rectifier channel Kir7.1 displays unusual $K^+$ permeation properties. J Neurosci 18: 8625-8636, 1998
33 Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488-492, 1985   DOI   ScienceOn
34 Hurst RS, Toro L, Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett 388: 59-65, 1996   DOI   ScienceOn
35 Duprat F, Lesage F, Fink M, Reyes R, Heurateaux C, Lazdunski M. TASK, a human background $K^+$ channel to sense external pH variations near physiological pH. EMBO J 17: 5464-5471, 1997
36 Harris RE, Larsson HP, Isakoff EY. A permanent ion binding site located between two gates of the Shaker $K^+$ channel. Biophys J 74: 1808-1820, 1998   DOI   PUBMED   ScienceOn
37 Lopatin AN, Nichols CG. '$K^+$' Dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol 108: 105-113, 1996   DOI   ScienceOn
38 Shieh RC, Chang JC, Arreola J. Interaction of $Ba^{2+}$ with the pores of the cloned inward rectifier $K^+$ channels Kir2.1 expressed in Xenopus oocytes. Biophys J 75: 2313-2322, 1998   DOI   ScienceOn
39 Fakler B, Brandle U, Bond CH, Glowatzki E, Konig C, Adelman JP, Zenner HP, Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier $K^+$ channels to intracellular spermine. FEBS Lett 356: 199-203, 1994   DOI   ScienceOn
40 Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372: 366-369, 1994   DOI   ScienceOn
41 So I, Ashmole I, Soh H, Park CS, Spencer PJ, Leyland M, Stanfield PR. Intrinsic gating in inward rectifier potassium channels (Kir2.1) with low polyamine affinity generated by site directed mutagenesis. Kor J Physiol Pharmacol 7: 131-142, 2003a   과학기술학회마을   ScienceOn
42 Topert C, Doring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A. Kir2.4: a novel $K^+$ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci 18: 4096-4105, 1998
43 Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 92: 549-567, 1988a   DOI   ScienceOn
44 Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 61: 687-708, 1973   DOI   PUBMED   ScienceOn
45 Jiang Y, Mackinnon R. The barium site in a potassium channel by x-ray crystallography. J Gen Physiol 115: 269-272, 2000   DOI   ScienceOn
46 Lopatin AN, Makhina EN, Nichols CG. The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J Gen Physiol 106: 923-955, 1995   DOI   ScienceOn
47 Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier $K^+$ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145: 47-179, 2002   DOI   PUBMED
48 Abrams CJ, Davies NW, Shelton PA, Stanfield PR. The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier $K^+$ channel Kir2.1. J Physiol 493: 643-649, 1996   DOI
49 Reuveny E, Jan YN, Jan LY. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying $K^+$ channel to $K^+$-selective permeation. Biophys J 70: 754-761, 1996   DOI   PUBMED   ScienceOn
50 Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee JK, Findlay JB, Boyett MR. Residues and mechanisms for slow activation and $Ba^{2+}$ block of the cardiac muscarinic $K^+$ channel, Kir3.1/Kir3.4. J Biol Chem 275: 35831-35839, 2000   DOI   ScienceOn
51 Thompson GA, Passmore GM, Spencer PJ, Davies NW, Stanfield PR. Blockage of inward rectifier potassium channels (murine Kir2.1) by $Ba^{2+}$ is influenced by an aspartate residue (D172). J Physiol 511P: 146P, 1998