• Title/Summary/Keyword: double bond

Search Result 335, Processing Time 0.028 seconds

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Pak, Youngshang;Ko, Young Chun;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4161-4164
    • /
    • 2012
  • Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin;Kang, Gyoung-Won;Park, Seong-Tae;Moon, Myeong-Hee;Park, Jung-Hag;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.999-1004
    • /
    • 2007
  • Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

Kinetic Studies on the Nucleophilic Addition of 3-Mercaptopropionic Acid to ${\beta},\;{\beta}$-Diethoxycarbonylstyrene Derivatives (${\beta},\;{\beta}$-Diethoxycarbonylstyrene 유도체에 대한 3-Mercaptopropionic Acid의 친핵성첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Yun-Chung Choi;Myung-Sook Chung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.127-134
    • /
    • 1989
  • The rate constants of the nucleophilic addition reaction of 3-mercaptopropionic acid to the ${\beta},\;{\beta}$-diethoxycarbonylstryene derivatives (H, p-OCH$_3$, 3,4,5-(OCH$_3)_3$, 3,4-methylenedioxy) were determined by ultraviolet spectrophotometry, and rate equation which could be applied over a wide pH range was obtained. On the basis of pH-rate profile and the presence of general base catalysis, a plausible mechanism of this addition reaction was propound:Below pH 6.0 the reaction was initiated by the addition of neutral 3-mercaptopropionic acid molecule, and in the range of pH 6.0∼8.0, a neutral 3-mercaptopropionic acid molecule and a sulfide anion competitively attacked to the double bond. Above pH 8.0, the reaction proceeded through the addition of a sulfide anion.

  • PDF

Design of Double Bond Down Converting Mixer Using Embeded Balun Type (발룬 내장형 이중대역 하향 변환 믹서 설계 및 제작)

  • Lee, Byung-Sun;Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • This paper describes the design of frequency down converting Mixer in the receiver to use compound semiconductor and CMOS product process. The basic theory and structure of frequency down converting Mixer is surveyed, and we design mixer circuit with active balun which use the compound semiconductor and CMOS process. This mixer convert a single ended signal to differential signal at input port of RF and LO instead of matching circuit to get dual band balanced mixer structure and characteristic broadband. This designed mixer has a conversion gain $-1{\sim}-6[dB]$ at $2{\sim}6[GHz]$ bandwidths. However, the simulation of the designed mixer with active balun has the result of a 7[dB] conversion gain for -2[dBm] LO input power and -10[dBm] input P1[dB] at 5.8[GHz].

1, 25(OH)$_2$-23ene-$D_3$ : Effects on Proliferation and Differentiation of U937 Cells in vitro and on Clcium Metabolism of Rat in vivo (1, 25(OH)$_2$-23ene-$D_3$ : in vitro에서 U937 세포의 증식과 분화 및 in vivo에서 쥐의 칼슘대사에 미치는 영향)

  • 정수자;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1995
  • 1, 25(OH)2-23ene-D3 is a novel vitamine D3 analog which has a double bond between C-23 and C-24. We describe the effects of this analog on cell differentiation and cell proliferation in vitro using the human histiocytic lymphoma cell line U937, and on calcium metabolism in rats in vivo. In the present investigation 1, 25(OH)2-23ene-D3 was compared to the natural metabolite of vitamin D3, 1$\alpha$, 25-dihydroxycholecalciferol[1, 25(OH)2-23ene-D3 was more potent than 1, 25(OH)2-23ene-D3 for inhibition of proliferation and induction of differentiation of U937 cells. Especially, its effect on induction of differentiation, as measured by superoxide production and nonspecific esterase(NSE) activity, was about 20-fold more potent that 1, 25(OH)2-23ene-D3. This analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ratio in Giemsa staining and the increase of adherence ability to surface. Intraperitoneal administration of 1, 25(OH)2-23ene-D3 to rats showed that the compound had at least 50 times less activity than 1, 25(OH)2-23ene-D3 in causing hypercalcemia and hypercalciuria. The strong direct effects of 1, 25(OH)2-23ene-D3 on cell proliferation and cell differentiation, coupled with its decreased activity of calcium metabolism make this compound an interesting candidate for clinical studies including patients with leukemia, as well as several skin disorders, such as psoriasis.

  • PDF

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reactions, Hydrogenation and Isomerization of Unsaturated Esters with a Rhodium(I)-Perchlorato Complex

  • Jeong Hyun Mok;Chin Chong Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.468-471
    • /
    • 1986
  • The isolated products from the reactions of $Rh(ClO_4)(CO)(PPh_3)_2$ (1) with CH_2$ = $CHCO_2C_2H_5$ (2) and trans-$CH_3CH$ = $CHCO_2C_2H_5$ (3) contain 80∼ 90% of $[Rh(CH_2 = CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ (4) and [Rh(trans-$CH_3CH = CHCO_2C_2H_5(CO)(PPh_3)_2]ClO_4$ (5), respectively where 2 and 3 seem to be coordinated through the carbonyl oxygen. It has been found that complex 1 catalyzes the isomerization of $CH_2 = CH(CH_2)_8CO_2C_2H_5$ (6) to $CH_3(CH_2)_nCH = CH(CH_2)_{7-n}CO_2C_2H_5$ (n = 0∼7) under nitrogen at 25$^{\circ}C$. The isomerization of 6 is slower than that of $CH_2 = CH(CH_2)_9CH_3$ to $CH_3(CH_2)_nCH$ = $CH(CH_2)_{8-n}CH_3$ (n = 0∼8), which is understood in terms of the interactions between the carbonyl oxygen of 6 and the catalyst. It has been also observed that complex 1 catalyzes the hydrogenation of 2, 3, 6, trans-$C_6H_5CH = CHCO_2C_2H_5$ (7), $CH_3(CH_2)_7CH = CH(CH_2)_7CO_2C_2H_5$ (8) and $CH_2 = CH(CH_2)_9CH_3$ (9), and the isomerization (double bond migration) of 6 and 9 under hydrogen at 25$^{\circ}C$. The interactions between the carbonyl oxygen of the unsaturated esters and the catalyst affect the hydrogenation in such a way that the hydrogenation of the unsaturated esters becomes slower than that of simple olefins.

Influence of Cholesterol Derivatives on the Several Physicochemical Properties of Oleic acid (Oleic acid의 여러 물리화학적 성질에 미치는 Cholesterol계 유도체의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.813-820
    • /
    • 2019
  • The influence of cholesterol on the physicochemical properties of the oleic acid was clarified through the measurements of density, viscosity, IR, $^1H$ NMR, self-diffusion coefficient for the oleic acid samples containing a small amount of additives such as cholesterol, cholestanol, cholestane, cholesteryl oleate, benzene, and ethanol. Cholesterol, possessing one OH group and one double bond in its molecular structure, largely increased the viscosity and reduced the self-diffusion coefficient and the intramolecular movement of oleic acid. Oleic acid forms a complex with cholesterol as well as with ethanol. On the basis of these complex formations and the existence of the clusters composed of oleic acid dimers, it was known the role and the fundamental mechanism of cholesterol to the intermolercular and intramolecular movements of oleic acid in the liquid state.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

LC-MS Analysis According to the Combined Treatment of Paenibacillus yonginensis DCY84T and Silicon in Rice

  • Yo-Han Yoo;Mee Youn Lee;Yeon-Ju Kim;Eok-Keun Ahn;Ki-Hong Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.232-232
    • /
    • 2022
  • We reported in our recent studies that the combined treatment of Paenibacillus yonginensis DCY84T (DCY84T) and Silicon (Si) promotes initial plant growth and increases resistance to biotic and abiotic stress. To understand the molecular background of these phenotypes, Liquid Chromatography Mass Spectrometry (LC-MS) analysis was performed, and it was confirmed that unsaturated fatty acid metabolites such as oleic acid and linoleic acid decreased in response to the combined treatment of DCY84T and Si. The stearoyl-acyl carrier protein desaturase (SACPD) introduces the cis double bond into the acyl-ACPs at C9, resulting in the production of unsaturated fatty acid. We identified OsSSI2 encoding SACPD in rice and found that the expression of OsSSI2 was reduced under DCY84T and Si treatment. Furthermore, qRT-PCR analysis revealed that the expression of OsWRKY45, which is downstream of OsSSI2, was upregulated in response to DCY84T and Si treatment. These results enable the speculation that activation of the salicylic acid (SA)-responsive gene, OsWRKY45, may contribute to enhancing biological stress resistance. Based on this, we propose a probable model for the rice defense pathway following DCY84T and Si treatment. This model retains a WRKY45-dependent but NH1(NPR1)-independent SA signaling pathway.

  • PDF