• 제목/요약/키워드: dose profile

검색결과 376건 처리시간 0.029초

Si(100)에 이온 주입 시 dose rate에 따른 damage profile과 sheet resistance의 변화

  • 김형인;정영완;강석태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.188-188
    • /
    • 2010
  • 동일한 에너지와 일정한 dose량을 유지하고 dose rate만을 변화시켜가며 이온을 Si(100) 표면에 주입하였다. 이러한 조건하에서 이온의 dose rate가 커지게 되면 시료 내에서 relaxation되는 시간이 짧아져서 damage의 양이 증가하게 되고 depth profile의 꼬리부분이 표면 쪽으로 올라오게 된다. 이와 같은 damage profile의 변화가 sheet resistance에 영향을 준다는 실험결과가 있다. 본 연구에서는 Crystal-TRIM computer simulation을 통해서 depth profile과 damage profile의 결과를 얻고, dose rate가 커질수록 시료표면 근방에 잔류 damage의 양이 높게 나타나는 것을 확인할 수 있다. 또한, 잔류 damage의 표면근방에서의 분포가 annealing 이후 sheet resistance를 변화시키는데 이에 대한 mechanism을 규명하고자 한다.

  • PDF

Exit Beam Dose Profile을 이용한 3차원 보상체의 성능확인 (The Verification of Dosimetric Characteristics of the 3-D Compensator with the Exit Beam Dose Profile)

  • 이상훈;이병용;권수일;김종훈;장혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제7권2호
    • /
    • pp.3-17
    • /
    • 1996
  • 방사선 치료분야에서 선량 보상체가 널리 이용되고 있으나, 그 보상효과에 대한 확실한 검증 방법은 알려진 바가 거의 없다. 본 연구에서는 Missing Tissue 뿐 아니라, Internal Tissue Inhomogeneity 까지 고려한 3차원 보상체를 제작하고, Exit Beam Dose Profile의 측정값과 본 연구에서 고안한 방법으로 기대값을 구해 비교함으로써 보상체의 성능을 평가하고자 하였다. 환자정보는 CT Simulator를 사용하여 얻었고, 보상체 정보는 Render Plan 3-D Planning System을 통해 얻었다. Computer Controlled Milling Machine으로 알루미늄 보상체를 제작해서 보상체가 있는 경우와 없는 경우의 선량 프로파일을 측정하여 비교하였다. 측정은 폴리스티렌 팬톰 사이에 필름을 삽입하여 팬톰 내에서의 실제 선량 분포를 구하고, 필름 카셋트를 이용해서 Exit Beam Dose Profile 을 동시에 얻었다. Oblique Beam, Parallel Opposing Beam, Inhomogeneus Human Phantom에 대해 제작된 보상체가 각각 선량보상 효과가 잘 나타남을 볼 수 있었고, 이 연구에서의 성능확인 방법을 통해 보상체의 성능을 확인할 수 있었다.

  • PDF

Si(100)에 low energy로 Ultra high dose 이온 주입 시 Dose rate 변화에 따른 Sheet Resistance

  • 김형인;박재형;전유승;강석태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2010
  • Si(100) 표면에 이온을 일정한 에너지로 dose량을 동일하게 유지하고, dose rate만을 변화시켜가며 주입한 후에 depth profile과 damage, 그리고 sheet resistance를 조사하였다. 일정한 에너지로 이온을 주입하여도 dose rate의 변화에 따라서 depth profile에 변화를 보이는 것을 확인할 수 있었고 sheet resistance역시 dose rate변화에 비례하여 변화하는 것을 확인할 수 있었다. 본 연구는 Crystal-TRIM program으로 computer simulation 하여 damage profile의 결과를 통해 dose rate가 클수록 시료 표면 근처에 잔류 damage의 양이 높게 나타나는 것을 알 수 있었고 그 잔류 damage의 표면근방 분포가 sheet resistance에 직접적인 영향을 미친다는 것을 확인할 수 있었다.

  • PDF

방사선 수술시 Isocenter, 콜리메이터 변수에 따른 선량 분포 비교연구 (A Comparison Study with the Vatiation of Isocenter and Collimator in Stereotactic Radiosurgery)

  • 오승종;박정훈;곽철은;이형구;최보영;이태규;김문찬;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제13권3호
    • /
    • pp.129-134
    • /
    • 2002
  • 방사선 수술시 예상되는 치료효과를 위해 종양에 미리 정의된 방사선량이 조사되도록 수술을 계획한다. 이러한 수술계획시 다양한 모양의 종양에 대해 수술 계획을 수행하는 것은 많은 시간과 숙련된 수술계획자가 요구된다. 최근 들어, 뛰어난 컴퓨터 기술의 발달로 컴퓨터를 이용한 수술계획 방법들이 많이 연구 발표되고 있으나 현재 대부분의 수술계획은 주로 시행착오를 통한 방법으로 이루어진다. 본 연구에서는 방사선 수술계획시 고려되는 많은 빔관련 변수들을 고려하고 다양한 형태의 종양들을 원통형으로 가정한 후 이 종양모델을 50% 등선량 곡선내에 포함시킬수 있는 변수들을 찾아 이들을 비교 분석하였다. 수많은 변수들 중 본 연구에서 고려한 변수는 콜리메이터 크기, isocenter의 개수와 isocenter 간의 거리이고 이때 얻어진 선량분포는 Dose Volume Histogram(DVH)과 Dose Profile로 서로 비교하였다. 비교결과 우리가 가정한 50% 등선량 곡선내에 종양모델을 포함시키기 위해서는 일정 개수 이상의 isocenter의 사용은 치료의 복잡성만을 증가시킬뿐 Dose Profile과 DVH에서의 변화는 눈에 뛰게 향상되지 않았다. 또한 같은 콜리메이터 크기로 같은 개수의 isoceter를 사용할 때 isocenter의 거리가 지름대비 1.0-1.2일 경우의 DVH와 Dose profile이 상대적으로 우수하게 나타났다.

  • PDF

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • 제43권1호
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF

PET/CT 저선량 적용 시 CT 감쇠보정법에 따른 피폭선량 저감효과 (Effect of the Dose Reduction Applied Low Dose for PET/CT According to CT Attenuation Correction Method)

  • 정승우;김홍균;권재범;박성욱;김명준;신영만;김영헌
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.127-133
    • /
    • 2014
  • PET/CT에서 환자피폭 문제로 인해 저 선량의 중요성이 강조되고 있다. 본 연구에서는 기존에 사용되던 CT 데이터를 이용한 감쇠보정법인 CTAC와 새롭게 적용된 Q.AC를 환자실험과 팬텀 실험을 통해 저 선량으로 촬영 시 PET 영상에 미치는 영향에 대해 알아보고자 한다. 실험장비는 GE사의 PET/CT Discovery 710 (GE Healthcare, USA)를 사용하였으며 팬텀실험으로 감쇠보정의 정량적 평가를 위한 NEMA IEC body phantom과 균일성 평가를 위한 Uniform NU2-94 phantom을 사용하였다. 각각의 팬텀 내부에 동위원소 18-F FDG를 70.78 MBq, 22.2 MBq 주입하고 CT조건은 저 선량조건으로 80 kVp, 10 mA로부터 일반선량 조건으로 140 kVp, 120 mA 조건까지 스캔 후 CTAC와 Q.AC 두 감쇠보정법을 적용하여 재구성하였다. PET 영상에서 일반선량 조건을 기준값으로 정하고 horizomtal profile과 vertical profile을 통해 정량평가를 시행하고 기준값과의 상대적 오차를 평가하였다. 또한 환자실험으로 정상체중 환자와 과체중 환자를 구분하여 저 선량과 일반선량으로 비교 촬영한 뒤 CTAC와 Q.AC로 재구성된 PET영상에서 주요장기별 SUV에 대한 상대적 오차와 신호 대 잡음비를 비교분석하였다. 팬텀실험 결과 저선량 조건에서 CTAC와 Q.AC로 각각 재구성한 PET 영상의 profile과 상대적 오차에서 CTAC보다 Q.AC가 기준값과의 오차가 적은 그래프를 얻었다. 환자실험의 경우 일반선량 조건에서는 정상체중 환자와 과체중 환자 모두 감쇠보정법에 따른 상대적 오차값의 변화가 적었으나 저 선량 조건에서는 정상체중 환자보다 과체중 환자에서 감쇠보정법의 변경에 의한 상대적 오차의 감소폭이 커짐으로 기준값과 차이가 감소하였다. 기존의 감쇠보정법인 CTAC는 80 kVp, 10 mA의 저선량 CT를 사용하는데 있어 PET 영상의 선속경화현상이 발생한다. 이로 인해 CTAC를 이용하여 재구성된 PET 데이터는 정량화하는데 문제가 될 수 있음을 확인했다. 반면에 새로운 알고리즘이 적용된 Q.AC는 과체중 환자의 경우 80 kVp, 10 mA 정도까지는 140 kVp, 120 mA 조건으로 촬영하여 재구성한 PET 데이터 결과와 차이가 적음을 확인할 수 있었다. Q.AC를 이용한 경우 기존보다 저 선량의 CT를 이용해 PET의 재구성에 이용할 수 있으므로 환자의 피폭을 줄이는 데 큰 역할을 할 것으로 기대한다.

  • PDF

탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가 (Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion)

  • 나예진;장지원;장세욱;박효국;이상규
    • 대한방사선치료학회지
    • /
    • 제35권
    • /
    • pp.33-39
    • /
    • 2023
  • 목 적: 환자 체표면과 고정기구 사이에 발생하는 공기층 두께에 따른 선량 변화를 치료 계획을 통해 알아보고자 한다. 대상 및 방법: 팬텀과 열가소성 고정기구 사이에 5 mm 두께의 Bolus를 0, 1, 2, 3장을 놓아 공기층의 두께를 조절하였고 고정기구를 씌워 총 4가지 조건으로 전산화 모의단층촬영을 시행하였다. 430 cGy (Relative Biological Effectiveness,RBE)씩 6번이 조사 되도록 계획하였으며, 임상표적체적의 95% 부피에 전달된 선량이 2580 cGy (RBE)가 되도록 치료 계획을 수립하였다. 임상표적체적의 선량은 Lateral dose profile의 반치폭값으로 평가하였고 피부 선량은 선량 체적 곡선으로 평가하였다. 결 과: 임상표적체적에서 Lateral dose profile 반치폭 값은 4.89, 4.86, 5.10, 5.10 cm로 나타났다. 피부에서 4가지 조건의 선량의 평균값은 D95%3.25±1.7 cGy (RBE), D30%1193.5±10.2 cGy (RBE)의 차이를 보였으며 처방 선량 1%에서의 피부 부피 값 평균은 83.22±4.8% 이내의 차이를 확인하였다. 공기층 두께 변화에 따른 임상표적체적과 피부에서의 선량 모두 큰 변화를 보이지는 않았다. 결론 : 탄소입자 치료를 위해 Solid 형태의 고정기구 제작 시 약간의 공기층은 CTV의 선량 적용 범위를 벗어나지 않는다.

  • PDF

Off-line PET-CT를 이용한 양성자치료에서의 Range 검증 (Analysis of the Range Verification of Proton using PET-CT)

  • 장준영;홍건철;박세준;박용철;최병기
    • 대한방사선치료학회지
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2017
  • 목 적: 양성자치료에 이용되는 양성자선은 종양 부위 앞에 있는 정상 조직에는 적은 선량을 주는 반면 암 조직 부위에서는 브래그 피크(Bragg peak)를 형성하며 최대 선량을 주고 바로 소멸하는 특징을 가지고 있으며 양성자치료의 장점을 극대화하기 위해서는 양성자의 도달 위치 검증이 매우 중요하다. 본 연구에서는 Off-line PET CT 방법을 이용하여 양성자 조사 후 양성자 궤적을 따라 생성된 11 C(반감기=20분), 150(반감기=2분), 13N (반감기=10분) 등의 핵자에서 방출되는 양전자의 분포를 측정하여 양성자의 Range와 Distal falloff 지점을 검증하게 되었다. 대상 및 방법: IEC 2001 Body 팬텀안에는 37 mm, 28 mm, 22 mm 구체를 삽입할 수 있게 구성되어 있으며 팬텀안에 물을 가득 채워 각 구체크기별로 CT image를 획득하였고 양성자의 Range와 Distal falloff 지점을 검증하기 위하여 양성자치료계획시스템으로 각 구체 크기 별로 37 mm 구체에서 46 mm, 28 mm에서 37 mm, 22 mm 구체에서 33 mm의 SOBP를 설정하였고, Scanning 방법으로 Gantry 0도의 Single beam으로 동일한 센터에서 양성자를 조사하였다. 조사된 팬텀은 PET-CT 장비를 이용하여 스캔하였고, PET-CT 영상획득방법은 1분씩 50개의 영상을 획득하여 팬톰 내의 구체를 포함하여 4개의 ROI를 설정한 후 10개씩 영상을 합산하여 재구성 하였다. 치료계획 시 수립한 구체크기에 따른 Dose profile과 비교하기 위하여 Depth에 따른 Activity profile로 나타냈다 결 과: 37 mm, 28 mm, 22 mm 구체에서 모두 Distal falloff position 에서 Dose profile과 같이 PET-CT의 Activity profile 역시 급격히 감소하는 양상을 나타냈다. 하지만 Range를 평가하는 구간인 SOBP구간에서는 Activity profile의 경우 Proximal 부분에서의 측정치가 Dose profile 양상과 다른 결과가 나왔으며, Distal falloff position을 구체 크기별로 양성자 치료계획과 PET-CT 측정치와의 차이를 비교해 본 결과 37 mm 구체에서는 Max dose의 50 % 지점에서 최대 1.4 mm, 28 mm 구체에서는 45 % 지점에서 최대 1.1 mm, 22 mm 구체에서의 차이는 40 % 지점에서 최대 1.2 mm로 모두 1.5 mm 미만의 차이를 보였다. 결 론: 양성자치료의 장점을 최대한 활용하기 위해서는 양성자빔의 Range를 검증하는 것이 매우 중요하다. 본 연구에서는 PET-CT 장비를 이용하여 양성자빔의 SOBP 와 Distal falloff 위치를 통해 양성자 Range를 확인하였고 그 결과 PET-CT 장비를 이용해 측정한 Activity 분포와 양성자 치료계획과의 Distal falloff position의 차이는 1.4 mm 내에서 일치함을 확인하였다. 이는 본원에서 양성자치료계획 시 적용하는 선량마진에 참고자료로 활용될 수 있을 것으로 사료된다.

  • PDF

Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구 (Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution)

  • 이준성;김양수;이선영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권5호
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.