• Title/Summary/Keyword: dopant amount

Search Result 63, Processing Time 0.031 seconds

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Synthesis of Praseodymium-Doped TiO2 Nanocatalysts by Sol-Microwave and Their Photocatalytic Activity Study

  • Huang, Fengping;Wang, Shuai;Zhang, Shuang;Fan, Yingge;Li, Chunxue;Wang, Chuang;Liu, Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2512-2518
    • /
    • 2014
  • The praseodymium-doped $TiO_2$ photocatalyst samples, which could degrade methyl orange under UV irradiation, were prepared by sol-microwave method for improving the photocatalytic activity of $TiO_2$. The resulting materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra, Fourier transform infrared spectra (FTIR) and Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS). It was found Pr doping retarded the growth of crystalline size and the phase transformation from anatase to rutile, and narrowed the band gap energy. Praseodymium doping brought about remarkable improvement in the photoactivity. The optimal dopant amount of Pr was 2% by molar of cement and the calcination temperature was $500^{\circ}C$ for the best photocatalytic activity. The improvement of photocatalytic activity was ascribed to the occurrence of lattice distortion and the effective containment of the recombination of the electron-hole by $Pr^{3+}$.

Structural and Magnetic Properties of Cr-Zn Nanoferrites Synthesized by Chemical Co-Precipitation Method

  • Powar, Rohit R.;Phadtare, Varsha D.;Parale, Vinayak G.;Pathak, Sachin;Piste, Pravina B.;Zambare, Dnyandevo N.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.474-482
    • /
    • 2019
  • Chromium-doped zinc ferrite nanoparticles with the general formula CryZnFe2-yO4 (y = 0, 0.025, 0.05, 0.075, and 0.1) were synthesized by a surfactant-assisted chemical co-precipitation route using metal nitrate salt precursors. The phase purity and structural parameters were determined by powder X-ray diffraction. The concentration of Cr3+ doped into ZnFe2O4 (ZF) noticeably affected the crystallite size, which was in the range of 22 nm to 36 nm, and all samples showed a single cubic spinel structure without any secondary phase or impurities. The lattice parameter, X-ray density, and skeletal density increased with an increase in the Cr-doping concentration; on the other hand, a decreasing trend was observed for the particle size and porosity. The influence of Cr3+ substitution on ZF magnetic properties were studied under an applied field of 15 kOe. The overall results revealed that the incorporation of a small amount of Cr dopant changed the structural, electrical, and magnetic properties of ZF.

Electrical and Optical Characteristics of Isoelectronic Al-doped GaN Films

  • Lee, Jae-Hoon;Ko, Hyun-Min;Park, Jae-Hee;Hahm, Sung-Ho;Lee, Jung-Hee
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • The effects of the isoelectronic AI-doping of GaN grown by metal organic chemical vapor deposition were investigated for the first time using scanning electron microscopy (SEM), Hall measurements, photoluminescence (PL), and time-resolved PL. When a certain amount of Al was incorporated into the GaN films, the room temperature photoluminescence intensity of the films was approximately two orders larger than that of the undoped GaN. More importantly, the electron mobility significantly increased from 130 for the undoped sample to $500\textrm{cm}^2/Vs$ for the sample grown at a TMAl flow rate of $10{\mu}mol/min$, while the unintentional background concentration only increased slightly relative to the TMAl flow. The incorporation of Al as an isoelectronic dopant into GaN was easy during MOCVD growth and significantly improved the optical and electrical properties of the film. This was believed to result from a reduction in the dislocation-related non-radiative recombination centers or certain other defects due to the isoelectronic Al-doping.

  • PDF

The luminescent characteristics of Al codoped $ZnGa_2$$O_4$:Mn phosphors (Al이 첨가된$ZnGa_2$$O_4$:Mn 형광체의 발광특성)

  • 박용규;한정인;곽민기;한종근;주성후
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • The green emitting phosphors of the Field Emission Display(FED), Al codoped ZnGa$_{2}$O$_{4}$:Mn, were synthesized and sintered at high temperature. From X-ray diffraction measurements, it was confirmed that poly crystalline ZnGa$_{2}$O$_{4}$ and ZnAI$_{2}$O$_{4}$ solid solution coexist in Al codoped ZnGa$_{2}$O$_{4}$:Mn. Photoluminescence spectra of Al codoped ZnGa$_{2}$O$_{4}$:Mn show that the main peak position is shifted from 504 nm to 513 nm with the increase of Al concentration. The brightness was improved with the amount of Al dopant. It showed the maximum value at the doping level of 0.03 mole and then, it degraded rapidly. These results are due to the superposition of emission from . ZnGa$_{2}$O$_{4}$:Mn and ZnAI$_{2}$O$_{4}$:Mn.

  • PDF

Preparation and Properties of $CuSb_2O_6$-doped $SnO_2$ Thin Films by Pulsed Laser Deposition (PLD법으로 제조된 $CuSb_2O_6-SnO_2$ 박막의 전기.광학적 특성)

  • Lee, Chae-Jong;Byun, Seung-Hyun;Lee, Hee-Young;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.262-263
    • /
    • 2007
  • Effect of co-doping on optical and electrical properties of $SnO_2$ based thin films were studied. $SnO_2$ ceramic targets with up to 50mol% $CuSb_2O_6$ were prepared by sintering mixed-oxide compact in the temperature range of $1100^{\circ}C{\sim}1300^{\circ}C$ in air. Thin films were then deposited onto glass substrates by pulsed laser deposition where substrate temperature was maintained in the range of $500{\sim}650^{\circ}C$ with oxygen pressure of 3m~7.5mTorr and energy density of $1Jcm^{-2}$. It was found that with the increase amount of dopant, the electrical properties of thin films tended to improve with the smallest resistivity value obtained at about 8mol% doping, further increase, however, usually impaired the optical transmission in the visible range.

  • PDF

Effect of Gd2O3 and Sm2O3 Addition on the Properties of CeO2 (CeO2에서의 Gd2O3 및 Sm2O3첨가량변화에 따른 특성변화)

  • 최광훈;이주신;류봉기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.979-986
    • /
    • 2003
  • Sintering behavior and electrical properties of CeO$_2$ system were investigated as a function of the amount of Gd:$_2$O$_3$, and Sm$_2$O$_3$, addition. Doped CeO$_2$ consisted of a homogeneous solid solution of the cubic fluorite structure within the amount of addition from 0 mol% to 15 mol%. Grain growth rate of Gd$_2$O$_3$-doped CeO$_2$ was much smaller than that of pure CeO$_2$, while densification rate was considerably larger. Thus doped CeO$_2$ showed a higher density than pure CeO$_2$. The electrical conductivity of Ce$_1$-$_{x}$Sm$_{x}$O$_1$-$_{x}$/2 was increased up to x = 0.2. However, with further increasing dopant concentrations, the magnitude of the conductivity was found to decrease remarkably. The ionic conductivity value obtained at $700^{\circ}C$ for 10 mol% Sm$_2$O$_3$-doped CeO$_2$ electrolyte was 4.6${\times}$10$^{-2}$ S$.$$cm^{-1}$ /.EX> /.

Structural and Dielectric Properties of (Ba,Sr,Ca)$TiO_3$ Thick films Doped with $Dy_{2}O_{3}$ ($Dy_{2}O_{3}$가 첨가된 (Ba,Sr,Ca)$TiO_3$ 후막의 구조 및 유전 특성)

  • Yun, Sang-Eun;Lee, Sung-Gap;Park, Sang-Man;Noh, Hyun-Ji;Lee, Young-Hie;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1275-1276
    • /
    • 2007
  • For fabrication of $BaTiO_3$ system Ferroelectric thick films, (Ba,Sr,Ca)$TiO_3$ (BSCT) powders, prepared by using the alkoxide-based sol-gel method, were doped $MnCO_3$ as acceptor and $Dy_{2}O_{3}$ as donor. $MnCO_3$ and $Dy_{2}O_{3}$-doped (Ba,Sr,Ca)$TiO_3$ thick films were fabricated by screen printing techniques on high purity alumina substrates. The structure and dielectric properties were investigated with variation of $Dy_{2}O_{3}$ amount. As a result of the differential thermal analysis(DTA), exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size and thickness of specimens no doped with $Dy_{2}O_{3}$ was 1.32mm, 52mm, respectively. The relative dielectric constant decreased and dielectric loss increased with increasing amount of $Dy_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Dy_{2}O_{3}$ were 4043 and 0.4% at 1 kHz, respectively. The relative dielectric constant gradually decreased in the measured frequency range from 0.1 to 100 kHz

  • PDF

The Effect of Trivalent Cation Doping on the Low Temperature Phase Stability of 2Y-TZP (3가 양이온 산화물이 첨가된 2Y-TZP의 저온 상안정성)

  • Jang, Ju-Woong;Kim, Hak-Kwan;Lee, Deuk-Yong;Kim, Dae-Joon;Park, Sun-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1055-1062
    • /
    • 2002
  • The phase stability and the Low Temperature Degradation(LTD) mechanism of Tetragonal Zirconia Polycrystals(TZP), sintered specimens of $Y_2O_3$-Stabilized Zirconia(2Y-TZP), doped with trivalent cations, were evaluated by investigating meachnical properties, Raman spectra, lattice parameter variation and the oxygen vacancy behavior under applied electric field. XRD observation was put forward on 2Y-TZP doped with trivalent cation whose ionic radii were larger than $Zr^{4+}(Sc^{3+},\;Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+},\;La^{3+})$ up to 2 mol% and sintered at 1500 h for 1h. For $La^{3+}$ doping, the stability of tetragonal phase was degraded due to the formation of the pyrochlore phase $(La_2Zr_2O_7)$ as the dopant content increased above exceeded 0.5 mol%. As the dosage increased, tetragonal phase maintained for the case of $Sc^{3+}$, whose radius was similar to $Zr^{4+}$, on the other hand, the cubic phase was formed for the cases of $Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+}$. As the radii of dopant cation increased, c/a ratio increased and it was experimentally observed that the amount of monoclinic phase decreased when the specimens were annealed at $220{\circ}C$ for 500 h.

Electrical Conductivity of S$m_2O_3-ZrO_2$ Systems (S$m_2O_3-ZrO_2$계의 전기전도성)

  • Jeong Hwan Cho;Keum Hwi Chang;Keu Hong Kim;Yong Bae Kim;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.608-614
    • /
    • 1985
  • Electrical conductivities of $ZrO_2-Sm_2O_3$ systems containing 10, 20, 30, 40, and 50 mol% of $ZrO_2$ have been measured as a function of temperature and of oxygen partial pressure at temperature from 500 to 1000${\circ}C$ and oxygen partial pressures from 1 ${\times}10^{-5}to 1{\times}10^{-1}$ atm. Plots of log conductivity vs. 1/T are found to be linear with an inflection point at around 650$^{\circ}C$ and the temperature dependence of conductivity shows two different defect structures. The conductivities are increased with increasing pressure, slowing a p-type character. The electrical conductivity dependences on $Po_2$ are found to be ${\sigma}{\propto}Po_2^{1/5.3}$ at 650∼1000$^{\circ}C$ and ${\sigma}{\propto}Po_2^{1/6}$ at 500∼650$^{\circ}C$, respectively, The defect structures are Oi" at 650-1000$^{\circ}C$ and $Vs_m$"' at 500-650$^{\circ}C$. The electron hole is main carrier type, however ionic contribution is found at low temperature portion. Ionic contributions increased with the increasing amount of $ZrO_2$ dopant. In 60mol% $ZrO_2-Sm_2O_3$ system, the conductivity is increased with decreasing oxygen pressure.

  • PDF