DOI QR코드

DOI QR Code

Structural and Magnetic Properties of Cr-Zn Nanoferrites Synthesized by Chemical Co-Precipitation Method

  • Powar, Rohit R. (Department of Chemistry, Kisan Veer Mahavidyalaya) ;
  • Phadtare, Varsha D. (Department of Materials Science and Engineering, Yonsei University) ;
  • Parale, Vinayak G. (Department of Materials Science and Engineering, Yonsei University) ;
  • Pathak, Sachin (Department of Materials Science and Engineering, Yonsei University) ;
  • Piste, Pravina B. (Department of Chemistry, Yashavantrao Chavan Institute of Science) ;
  • Zambare, Dnyandevo N. (Department of Chemistry, Kisan Veer Mahavidyalaya)
  • Received : 2019.07.19
  • Accepted : 2019.08.13
  • Published : 2019.09.30

Abstract

Chromium-doped zinc ferrite nanoparticles with the general formula CryZnFe2-yO4 (y = 0, 0.025, 0.05, 0.075, and 0.1) were synthesized by a surfactant-assisted chemical co-precipitation route using metal nitrate salt precursors. The phase purity and structural parameters were determined by powder X-ray diffraction. The concentration of Cr3+ doped into ZnFe2O4 (ZF) noticeably affected the crystallite size, which was in the range of 22 nm to 36 nm, and all samples showed a single cubic spinel structure without any secondary phase or impurities. The lattice parameter, X-ray density, and skeletal density increased with an increase in the Cr-doping concentration; on the other hand, a decreasing trend was observed for the particle size and porosity. The influence of Cr3+ substitution on ZF magnetic properties were studied under an applied field of 15 kOe. The overall results revealed that the incorporation of a small amount of Cr dopant changed the structural, electrical, and magnetic properties of ZF.

Keywords

References

  1. Z. Wang, P. Hong, S. Peng, T. Zou, Y. Yang, X. Xing, Z. Wang, R. Zhao, Z. Yan, and Y. Wang, "$Co(OH)_2@FeCo_2O_4$ as Electrode Material for High Performance Faradaic Supercapacitor Application," Electrochim. Acta, 299 312-19 (2019). https://doi.org/10.1016/j.electacta.2019.01.017
  2. M. Amiri, M. Salavati-Niasari, and A. Akbari, "Magnetic Nanocarriers: Evolution of Spinel Ferrites for Medical Applications," Adv. Colloid Interface Sci., 265 29-44 (2019). https://doi.org/10.1016/j.cis.2019.01.003
  3. K. R. Sanadi, S. P. Patil, V. G. Parale, H. H. Park, G. S. Kamble, and H. M. Yadav, "Preparation of Cobalt Substituted Zinc Aluminum Chromite: Photocatalytic Properties and Suzuki Cross-Coupling Reaction," J. Mater. Sci.: Mater. Electron., 29 [9] 7274-86 (2018). https://doi.org/10.1007/s10854-018-8716-x
  4. V. D. Phadtare, V. G. Parale, G. K. Kulkarni, H. H. Park, and V. R. Puri, "Enhanced Microwave Absorption of Screen-Printed Multiwalled Carbon Nanotube/$Ca_{1-x}Ba_x-Bi_2Nb_2O_9 $ ($0{\leq}x{\leq}1$) Multilayered Thick Film Composites," J. Alloys Compd., 765 878-87 (2018). https://doi.org/10.1016/j.jallcom.2018.06.299
  5. V. D. Phadtare, V. G. Parale, G. K. Kulkarni, H. H. Park, and V. R. Puri, "Microwave Dielectric Properties of Barium Substituted Screen Printed $CaBi_2Nb_2O_9$ Ceramic Thick Films," Ceram. Int., 44 [7] 7515-23 (2018). https://doi.org/10.1016/j.ceramint.2018.01.150
  6. H. S. Jadhav, A. Roy, G. M. Thorat, and J. G. Seo, "Facile and Cost-Effective Growth of Highly Efficient $MgCo_2O_4$ Electro Catalyst for Methanol Oxidation," Inorg. Chem. Front., 5 1115-20 (2018). https://doi.org/10.1039/c7qi00736a
  7. V. G. Parale, K. Y. Lee, and H. H. Park, "Flexible and Transparent Silica Aerogel: An Overview," J. Korean Ceram. Soc., 54 [3] 184-99 (2017). https://doi.org/10.4191/kcers.2017.54.3.12
  8. A. I. Ivanets, V. Srivastava, M. Yu. Roshchina, M. Sillanpaa, V. G. Prozorovich, and V. V. Pankov, "Magnesium Ferrite Nanoparticles as a Magnetic Sorbent for the Removal of $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$ and $Cu^{2+}$ from Aqueous Solution," Ceram. Int., 44 [8] 9097-104 (2018). https://doi.org/10.1016/j.ceramint.2018.02.117
  9. D. S. Nair and M. Kurian, "Chromium-Zinc Ferrite Nanocomposites for the Catalytic Abatement of Toxic Environmental Pollutants under Ambient Conditions," J. Hazardous Mater., 344 925-41 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.045
  10. P. V. Gaikwad, R. J. Kamble, S. J. M. Gavade, S. R. Sabale, and P. D. Kamble, "Magneto-Structural Properties and Photocatalytic Performance of Sol-Gel Synthesized Cobalt Substituted Ni Cu Ferrites for Degradation of Methylene Blue under Sunlight," Phys. B, 554 79-85 (2019). https://doi.org/10.1016/j.physb.2018.11.032
  11. R. A. Pawar, S. M. Patange, A. R. Shitre, S. K. Gore, S. S. Jadhav, and S. E. Shirsath, "Crystal Chemistry and Single-Phase Synthesis of $Gd^{3+}$ Substituted Co-Zn Ferrite Nanoparticles for Enhanced Magnetic Properties," RSC Adv., 8 [44] 25258-67 (2018). https://doi.org/10.1039/c8ra04282a
  12. M. M. Rahman, S. B. Khan, M. Faisal, A. M. Asiri, and K. A. Alamry, "Highly Sensitive Formaldehyde Chemical Sensor Based on Hydrothermally Prepared Spinel $ZnFe_2O_4$ Nanorods," Sens. Actuators, B, 171-172 932-37 (2012). https://doi.org/10.1016/j.snb.2012.06.006
  13. J. Smit and H. P. J. Wijn, Ferrites-Physical Properties of Ferromagnetic in Oxides Relation to Their Technical Application; Wiley, New York, 1959.
  14. H. Knock and H. Dannheim, "Temperature Dependence of the Cation Distribution in Magnesium Ferrite," Phys. Status Solidi A, 37 [2] K135-37 (1976). https://doi.org/10.1002/pssa.2210370251
  15. S. S. Desai, S. M. Patange, A. D. Patil, S. K. Gore, and S. S. Jadhav, "Effects of $Zn^{2+}-Zr^{4+}$ Ions on the Structural, Mechanical, Electrical, and Optical Properties of Cobalt Ferrites Synthesized via the Sol-Gel Route," J. Phys. Chem. Solids, 133 171-77 (2019). https://doi.org/10.1016/j.jpcs.2019.05.024
  16. N. Rezlescu, E. Rezlescu, P. D. Popa, M. L. Craus, and L. Rezlescu, "Copper Ions Influence on the Physical Properties of a Magnesium-Zinc Ferrite," J. Magn. Magn. Mater., 182 [1-2] 2670-79 (2017).
  17. M. Wang, M. Yang, X. Zhao, L. Ma, X. Shen, and G. Cao, "Spinel $LiMn_{2-x}Si_xO_4$ (x < 1) through $Si^{4+}$ Substitution as a Potential Cathode Material for Lithium-Ion Batteries," Sci. China Mater., 59 [7] 558-66 (2016). https://doi.org/10.1007/s40843-016-5073-y
  18. M. Lakshmi, K. V. Kumar, and K. Thyagarajan, "An Investigation of Structural and Magnetic Properties of Cr-Zn Ferrite Nanoparticles Prepared by a Sol-Gel Process," J Nanostruct. Chem., 5 [4] 365-73 (2015). https://doi.org/10.1007/s40097-015-0168-8
  19. D. S. Nair and M. Kuriand, "Chromium-Zinc Ferrite Nanocomposites for the Catalytic Abatement of Toxic Environmental Pollutants under Ambient Conditions," J. Hazard. Mater., 344 925-41 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.045
  20. A. I. Borhan, V. Hulea, A. R. Iordan, and M. N. Palamaru, "$Cr^{3+}$ and $Al^{3+}$ Co-Substituted Zinc Ferrite: Structural Analysis, Magnetic and Electrical Properties," Polyhedron, 70 110-18 (2014). https://doi.org/10.1016/j.poly.2013.12.022
  21. D. S. Nair and M. Kurian, "Chromium-Zinc Ferrite Nanocomposites for the Catalytic Abatement of Toxic Environmental Pollutants under Ambient Conditions," J. Hazard. Mater., 344 925-41 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.045
  22. R. R. Powar, V. D. Phadtare, V. G. Parale, H.-H. Park, S. Pathak, P. R. Kamble, P. B. Piste, and D. N. Zambare, "Structural, Morphological, and Magnetic Properties of $Zn_xCo_{1-x}Fe_2O_4$ ($0{\leq}x{\leq}1$) Prepared Using a Chemical Co-Precipitation Method," Ceram. Int., 44 [17] 20782-89 (2018). https://doi.org/10.1016/j.ceramint.2018.08.079
  23. M. Ebirahmi, R. R. Shahraki, S. A. S Ebirahimi, and S. M. Masoudpanah, "Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method," J. Supercond. Novel Magn., 27 [6] 1587-92 (2014). https://doi.org/10.1007/s10948-014-2485-4
  24. A. Manikandan, J. J. Vijaya, M. Sundararajan, C. Meganathan, L. J. Kennedy, and M. Bououdina, "Optical and Magnetic Properties of Mg-doped $ZnFe_2O_4$ Nanoparticles Prepared by Rapid Microwave Combustion Method," Superlattices Microstruct., 64 118-31 (2013). https://doi.org/10.1016/j.spmi.2013.09.021
  25. N. Kasapoglu, A. Baykal, Y. Koseoglu, and M. S. Toprak, "Microwave-Assisted Combustion Synthesis of $CoFe_2O_4$ with Urea, and its Magnetic Characterization," Scr. Mater., 57 [5] 441-44 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.042
  26. Y. Koseoglu, M. I. O. Oleiwi, R. Yilgin, and A. N. Kocbay, "Effect of Chromium Addition on the Structural, Morphological and Magnetic Properties of Nano-Crystalline Cobalt Ferrite System," Ceram. Int., 38 [8] 6671-76 (2012). https://doi.org/10.1016/j.ceramint.2012.05.055
  27. A. A. Birajdar, S. E. Shirsath, R. H. Kadam, S. M. Patange, D. R. Mane, and A. R. Shitre, "Frequency and Temperature Dependent Electrical Properties of $Ni_{0.7}Zn_{0.3}Cr_xFe_{2-x}O_4 $ ($0{\leq}x{\leq}0.5$)," Ceram. Int., 38 [4] 2963-70 (2012). https://doi.org/10.1016/j.ceramint.2011.11.074
  28. K. A. M. Khalaf, A. D. Al-Rawas, H. M. Widatallah, K. S. Al-Rashdi, A. Sellai, A. M. Gismelseed, M. Hashim, S. K. Jameel, M. S. Al-Ruqeishi, K. O. Al-Riyami, M. Shongwe, and A. H. Al-Rajhi, "Influence of $Zn^{2+}$ Ions on the Structural and Electrical Properties of $Mg_{1-x}Zn_xFeCrO_4$ Spinels," J. Alloys Compd., 657 733-47 (2016). https://doi.org/10.1016/j.jallcom.2015.10.157
  29. V. D. Phadtare and V. R. Puri, "Studies on Electrical and Dielectric Properties of Co-Precipitated Aurivillius Phase $Ca_{1-x}Ba_xBi_2Nb_2O_9$ Ceramics," Ceram. Int., 42 [7] 8581-86 (2016). https://doi.org/10.1016/j.ceramint.2016.02.087
  30. A. R. Denton and N. W. Ashcroft, "Vegard's Law," Phys. Rev. A, 43 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161
  31. B. D. Culity, Elements of X-ray Diffraction; Vol. 99, p. 96, Addison Wesley Pub Co Inc, 1967.
  32. U. R. Ghodake, N. D. Chaudhari, R. C. Kambale, J. Y. Patil, and S. S. Suryavanshi, "Effect of $Mn^{2+}$ Substitution on Structural, Magnetic, Electric and Dielectric Properties of Mg-Zn Ferrites," J. Magn. Magn. Mater., 407 60-8 (2016). https://doi.org/10.1016/j.jmmm.2016.01.022
  33. K. J. Standley, Oxide Magnetic Materials, Oxford at Clarendon Press, London, 1962.
  34. R. D. Waldron, "Infrared Spectra of Ferrites," Phys. Rev., 99 [6] 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727
  35. M. I. Mendelson, "Average Grain Size in Polycrystalline Ceramic," J. Am. Ceramic. Soc., 52 [8] 443-46 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
  36. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, and K. S Nagaraja, "Synthesis of Metal Ferrite ($MFe_2O_4$, M=Co, Cu, Mg, Ni, Zn) Nanoparticles as Humidity Sensor Materials," J. Exp. Nanosci., 8 [3] 358-70 (2013). https://doi.org/10.1080/17458080.2012.690893
  37. R. H. Kadam, A. Karim, A. B. Kadam, A. S. Gaikwad, and S. E. Shirsath, "Influence of $Cr^{3+}$ Substitution on the Electrical and Magnetic Properties of $Ni_{0.4}Cu_{0.4}Zn_{0.2}Fe_2O_4$ Nanoparticles," Int. Nano Lett., 2 28 (2012). https://doi.org/10.1186/2228-5326-2-28

Cited by

  1. Superparamagnetic contributions, optical band gap tuning and dominant interfacial resistive mechanisms in ferrites nanostructures vol.894, 2019, https://doi.org/10.1016/j.jallcom.2021.162431