• Title/Summary/Keyword: dopaminergic receptors

Search Result 60, Processing Time 0.026 seconds

Effects of the dopaminergic system on release of TSH and thyroid hormone in rats (랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향)

  • Lee, Sang-woo;Kim, Jin-sang;Han, Jeong-hee
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

Changes of M1 muscarinic receptor mRNA and $[^3H]$ pirenzepine receptor binding in the brain of sensitized mice by methamphetamine administration

  • Kim, Kyung-In;Yoo, Ji-Hoon;Cho, Jae-Han;Im, Ki-Dong;Lee, Seok-Yong;Lee, Sun-Bok;Jang, Choon-Gon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.84.1-84.1
    • /
    • 2003
  • Methamphetamine is a powerful stimulant that appears to produce locomotor activity and behavioral sensitization. Previous study has indicated that dopaminergic receptors are implicated in the behavioral responses of methamphetamine. Recently, it has been reported that other receptors, especially, M1 muscarinic acetylcholine receptor (M1R) plays an important role in the regulation of behavioral responses, and this receptor is abundantly expressed in brain regions, including the cerebral cortex, striatum, and the hippocampus of the animal. (omitted)

  • PDF

Combinatorial modulation of the spontaneous firings by glutamate receptors in dopamine neurons of the rat substantia nigra pars compacta

  • Kim, Shin-Hye;Park, Yu-Mi;Sungkwon Chung;Uhm, Dae-Yong;Park, Myoung-Kyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.40-40
    • /
    • 2003
  • Spontaneous firing rate and patterns of dopaminergic neurons in midbrain are key factors in determining the level of dopamine at target loci as well as in the mechanisms such as reward and motor coordination. Although glutamate, as a major afferent, is reported to enhance firing rate, the detailed actions of NMDA-, AMPA/kainate-, and metabotropic glutamate receptors (mGluR) on filing patterns are not clear. Thus we have investigated the role of glutamate receptors on the spontaneous firing activities using the network-free, acutely isolated dopamine neurons from substantia nigra pars compacta(SNc) of the 9-14 days rat. The isolated cells showed spontaneous regular firings of near 2.5 Hz, whose rate was enhanced by glutamate at submicromolar levels (0.3 $\square$M) but abolished by high concentrations more than 10 $\square$M.

  • PDF

Localization and Developmental Changes of Dopamine $D_1$ and $D_2$ Receptor mRNAs in the Rat Brain

  • Kim, Myeong-Ok;Choi, Wan-Sung;Lee, Bong-Hee;Cho, Kyung-Jae;Seo, Sook-Jae;Kang, Sung-Goo;Kim, Kyung-Jin;Baik, Sang-Ho
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.497-505
    • /
    • 1997
  • Dopamine plays diverse roles in the fetal brain development and differentiation. However, the development of the dopaminergic neurons and its receptors has not been fully understood. In our studies, in situ hybridization and immunohistochemical methods were used to investigate the ontogeny of dopaminergic neurons and its receptor subtypes during the fetal development of the rat. In situ hybridization data showed that dopamine $D_1$ and $D_2$ receptor mRNAs were expressed in the ventricular and subventricular zones of ganglionic eminence, thalamus, hypothalamus, and cortical neuroepithelium on gestational day 13. Expression of dopamine $D_1$ and $D_2$ receptors during gestational days 17 and 19 reached the same or similar level of that in the adult brain. Expression of $D_1$ receptor mRNA preceded that of $D_2$ receptor mRNA in the early developmental stage, although this pattern was reversed with the sharp increase of $D_2$ receptor mRNA soon after. $D_2$ receptor mRNA was expressed in substantia nigra of mesencephalon of the fetal rat brain. However, $D_1$ receptor mRNA was not detected in substantia nigra. Our results indicate that dopamine might function in the fetal brain during the early gestational period.

  • PDF

Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments

  • Rubio, Maria D.;Drummond, Jana B.;Meador-Woodruff, James H.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specifi c changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.

Involvement of Corticotropin-releasing Factor Receptor 2β in Differentiation of Dopaminergic MN9D Cells

  • Jin, Tae-Eun;Jang, Miae;Kim, Hyunjung;Choi, Yu Mi;Cho, Hana;Chung, Sungkwon;Park, Myoung Kyu
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • Corticotropin releasing factor (CRF) mediates various responses to stress through CRF receptors 1 and 2. CRF receptor 2 has two forms, $2{\alpha}$ and $2{\beta}$ each of which appears to have distinct roles. Here we used dopaminergic neuron-derived MN9D cells to investigate the function of CRF receptor 2 in dopamine neurons. We found that n-butyrate, a histone deacetylase inhibitor, induced MN9D cell differentiation and increased gene expression of all CRF receptors. CRF receptor $2{\beta}$ was minimally expressed in MN9D cells; however, its expression dramatically increased during differentiation. CRF receptor $2{\beta}$ expression levels appeared to correlate with neurite outgrowth, suggesting CRF receptor $2{\beta}$ involvement in neuronal differentiation. To validate this statement, we made a CRF receptor $2{\beta}$-overexpressing $MN9D/CRFR2{\beta}$ stable cell line. This cell line showed robust neurite outgrowth and GAP43 overexpression, together with MEK and ERK activation, suggesting MN9D cell neuronal differentiation. From these results, we conclude that CRF receptor $2{\beta}$ plays an important role in MN9D cell differentiation by activating the MEK/ERK signaling pathway.

Interrelationship between Dopaminergic Receptors and Catecholamine Secretion from the Rat Adrenal Gland (흰쥐 부신에서 카테콜아민 분비작용과 도파민 수용체간의 상관성)

  • Lim, Dong-Yoon;Yoon, Joong-Keun;Moon, Baek
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.87-100
    • /
    • 1994
  • It has been known for some time that dopamine-containing cells are existed in sympathetic ganglia, i.e., small, intensely fluorescent cells. However, its role and mechanism of action as a peripheral neurotransmitter are poorly understood so far. In the present study, an attempt was made to examine the effect of apomorphine, which is known to be a selective agonist of dopaminergic $D_2$. receptor on secretion of catecholamines (CA) from the isolated perfused rat adrenal gland. The perfusion of a low concentration of 10uM apomorphine into an adrenal vein for 20 min produced significant reduction in CA secretion induced by 5.32 mM ACh, 56 mM KCl, 100 uM DMPP and 100 uM McN-A-343. Increasing apomorphine concentration to 30 uM led to more markedly decreased CA secretion as compared to the case of 10 uM apomorphine and also did inhibit clearly CA release by $10^{-5}M$ Bay-K-8644. Furthermore, in adrenal glands preloaded with a higher dose of 100 uM apomorphine, CA releases evoked by ACh, excess $K^+$, DMPP and McN-A-343 were almost abolished by the drug. The perfusion of $3.3{\pm}10^{-5}M$ metoclopramide, which is well-known as a selective dopaminergic $D_2$ antagonist, produced significantly inhibitory effect of CA release by ACh, DMPP and McN-A-343 but did not affect that by excess $K^+$. However, preloading of 30uM apomorphine in the presence of metoclopramide did not modify the CA secretory effect of excess $K+$ and DMPP. These experimental results demonstrate that apomorphine causes dose-dependent inhibition of CA secretion by cholinergic receptor stimulation and also by membrane depolarization from the isolated perfused rat adrenal gland, suggesting that these effects appear to be exerted by inhibiting influx of extracellular calcium into the rat adrenal medullary chromaffin cells through activation of inhibitory dopaminergic receptors.

  • PDF

EFFECTS OF ACUTE AND SUBACUTE ADMINISTRATION OF COCAINE ON DOPAMINERGIC SYSTEMS IN THE RAT STRIATUM

  • Lim, D.K.;Ho, I.K.
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.75-88
    • /
    • 1990
  • The characteristics of dopamine uptake, D-1 and D-2 receptors after acute and subacute cocaine administration were determind in striatum from WKY and SHR. Cocaine was administered either acutely (40 mg/kg, s.c.) or twice daily (20 mg/kg, s.c.) for 3 and 7 days in 9-wk old WKY and SHR. Rats were sacrificed 30 min, 2 or 24 h after the single injection and 18 h after the last administration to the subacutely treated group. The changes in dopamine uptake, dopamine uptake sites, D-1 and D-2 receptors were determined using $(^3H)$dopamine, $(^3H)$-GBR-12935, $(^3H)$SCH-23390 and $(^3H)$sulpiride, respectively. In acutely treated rats, significant increases in $V_{max}$of dopamine uptake were observed 30 min after the cocanine injection in both strains without changes in $K_m$ values. The in vitro $IC_{50}$for cocaine was significantly decreased 30 min in WKY and 2 h in SHR. However, that for in vitro GBR-12909 was significantly increased 30 min and 2 h in both strains. Also densities of $(^3H)$-GBR-12935 binding sites were significantly increased 30 min and 2 h without changes in their $K_d$. Significant increases in D-2 receptor density were observed 30 min, 2 or 24 h after acute injection in both strains without changes in their affinities. The density of D-1 receptor was significantly decreased 30 min after the injection in WKY, but not in SHR. In subacutely treated rats, a significant increase in $K_m$ of dopamine uptake was observed in 7-day treated SHR. The in vitro $IC_{50}$fot GBR-12909 was significantly increased in 3-day treated WKY. The density of D-1 receptors was significantly increased in 3- and 7-day treated WKY, but not in SHR. The affinity of both binding sites remained unchanged. The results suggest that cocanine administration alters dopamine uptake, characteristics of dopamine uptake sites and dopamine receptor binding characteristics in rat brain. Furthermore, D-1 and D-2 dopamine receptors appear to be differently regulated.

  • PDF

Xylazine-induced depression and its antagonism by α-adrenergic blocking agents (Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과)

  • Kim, Chung-hui;Hah, Dae-sik;Kim, Yang-mi;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Kwon, Han-Na;Hong, Jin-Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.125-131
    • /
    • 2006
  • The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.