Browse > Article

Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice  

Eun, Jae-Soon (College of Pharmacy, Woosuk University)
Kwon, Han-Na (College of Pharmacy, Chungbuk National University)
Hong, Jin-Tae (College of Pharmacy, Chungbuk National University)
Oh, Ki-Wan (College of Pharmacy, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.14, no.3, 2006 , pp. 125-131 More about this Journal
Abstract
The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.
Keywords
(-)-Epigallocatechin gallate (EGCG); Morphine; Hyperlocomotion; Locomotor sensitization; Conditioned place preference (CPP); Dopamine receptor supersensitivity; Climbing behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhargava, H. N., (1980). Cyclo (Leu-Gly) inhibits the development of morphine induced analgesic tolerance and dopamine receptor supersensitivity in rat. Life Sci. 27, 117-123   DOI   ScienceOn
2 Blander, A., Hunt, T., Blair, R., and Amit, Z., (1984). Conditioned place preference: An evaluation of morphine's positive reinforcing properties. Psychopharmacol. 84, 124-127   DOI
3 Kim, H. S., Jang, C. G., and Lee, M. K., (1990). Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med. 56, 158-163   DOI   ScienceOn
4 Kim, H. S., Kang, J. G., and Oh, K. W., (1995). Inhibition by ginseng total saponin of the development of morphine tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmacol. 26, 1071-1076   DOI   ScienceOn
5 Beninger, R. J., and Miller, R., (1998). Dopamine D1-like receptors and reward-related incentive learning. Neurosci. Biobehav. Rev. 22, 335-345   DOI   ScienceOn
6 Leone, P., and Di Chiara, G.., (1987). Blockade of D-1 receptors by SCH23390 antagonizes morphine- and amphetamine-induced place preference conditioning. Eur. J. Pharmacol. 135, 251-254   DOI   ScienceOn
7 Mucha, R. F., Van der Kooy, D., O'Shaughnessy, M., and Bucenieks, P., (1982). Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 243, 91-105   DOI   ScienceOn
8 Bozarth, M. A., (1986). Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav. Brain Res. 22, 107-116   DOI   ScienceOn
9 Funada, M., Suzuki, T., and Misawa, M., (1994). The role of dopamine D1-receptors in morphine-induced hyperlocomotion in mice. Neurosci. Letter, 169, 1-4   DOI   ScienceOn
10 Huong, N. T. T., Matsumoto, K., Yamasaki, K., Due, N. M., Nham, N. T., and Watanabe, H., (1997). Majonoside-R2, a major constituent of Vietnamese ginseng, attenuates opioid-induced antinociception. Pharmacol. Biochem. Behav. 57, 285-291   DOI   ScienceOn
11 Jeziorski, M., and White, F. J., (1995). Dopamine receptor antagonist prevents expression, but not development, of morphine sensitization. Eur. J. Pharmacol. 275, 235-244   DOI   ScienceOn
12 Kalivas, P., and Nakamura, M., (1999). Neural systems for behavioral activation and reward. Curr. Opinion Neurobiol. 9, 223-227   DOI   ScienceOn
13 Kalivas, P. W., and Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223-244   DOI   ScienceOn
14 Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., and Yun, Y. P., (1999). Antithrombic activities of green tea catechins and (- )-epigallocatechin gallate. Thrombosis Res. 96, 229-237   DOI   ScienceOn
15 Serrano, A., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., and Minarro, J., (2002). Effects of D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26, 1263-1271   DOI   ScienceOn
16 Kim, H. S., Jang, C. G., Oh, K. W, Seong, Y. H., Rheu, H. M., Cho, D. H., and Kang, S. Y., (1996b). Effects of ginseng total saponin on cocaine-induced hyperactivity and conditioned place preference in mice. Pharmacol. Biochem. Behav. 53, 185-190   DOI   ScienceOn
17 Kim, H. S., Hong, Y. T., and Jang, C. C., (1998). Effects of the ginsenosides Rgl and RbI on morphine-induced hyperactivity and reinforcement in mice. J. Pharm. Pharmacol. 50, 555-560   DOI   ScienceOn
18 Kim, H. S., and Lim, H. K., (1999). Inhibitory effects of velvet antler water extract on morphine-induced conditioned place preference and DA receptor supersensitivity in mice. J. Ethnophannacol. 66, 25-31   DOI   ScienceOn
19 Koob, G.. F., and Bloom, F. E., (1988). Cellular and molecular mechanisms of drug dependence. Science 242, 715-723   DOI
20 Kuribara, H., and Tadokoro, S., (1989). Reverse tolerance to ambulation-increasing effects of MAP and MOR in 6 mouse strains. Jpn. J. Pharmacol. 49, 197-203   DOI
21 Kuribara, H., (1995). Modification of morphine sensitization by opioid and dopamine receptor antagonist: evaluation by studying ambulation in mice. Eur. J. Pharmacol. 275, 251-258   DOI   ScienceOn
22 Lee, S. Y., Lee, J. W., Lee, H., Yoo, H. S., Yun, Y. P., Oh, K. W., Ha, T. Y., and Hong, J. T., (2005). Inhibitory effect of green tea extract on beta-amyloid-induced PCI2 cell death by inhibition of the activation of NF-kB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol. Brain Res. 140, 45-54   DOI   ScienceOn
23 Noguchi, M., Yokoyama, M., Watanabe, S., Uchiyama, M., Nakao, Y., Hara, K., and Iwasaka, T., (2006). Inhibitory effect of the tea polyphenol, (-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Letters 234, 135-142   DOI   ScienceOn
24 Park, K., Vora, U., Darling, S. F., Kolta, M. G.., and Soliman, K. F. A., (2001). The role of inducible nitric oxide synthase in cocaineinduced locomotor sentitization. Physiol. Behav. 74, 441-447   DOI   ScienceOn
25 Pierce, R. C., and Kalivas, P. W., (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192-216   DOI   ScienceOn
26 Pollock, J., and Kornetsky. C., (1987). Evidence for the role of dopamine D I receptors in morphine induced stereotypic behavior. Neurosci. Letters 102, 291-296   DOI   ScienceOn
27 Porrino, L. J., Domer, F. R., Crane, A. M., and Sokoloff, L., (1988). Selective alterantions in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration of rats. Neuropsychopharmacol. 1, 109-118   DOI
28 Protais, P., Costentin, J., and Schwartz, J. C., (1976). Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in striatum. Psychopharmacol. 50, 1-6   DOI
29 Robinson, T. E., and Becker, J. B., (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 57-198
30 Rompre, P., and Wise, R. A., (1989). Behavioral evidence for midbrain dopamine depolarization inactivation. Brain Res. 477, 152-156   DOI   ScienceOn
31 Trujillo, K. A., Kubota, K. S., and Warmoth, K. P., (2004). Continuous administration of opioids produces locomotor sensitization. Pharmacol. Biochem. Behav. 79, 661-669   DOI   ScienceOn
32 Tzschentke, T. M., (1998). Measuring reward with the CPP paradigm: a comparative review of drug effects, recent progress and new issue. Prog. Neurobiol. 56, 613-672   DOI   ScienceOn
33 Wood, P. L., and Alter, C. A., (1998). Dopamine release in vivo from neostriata1 mesolimbic and mesocortica1 neurons utility of 3-methoxytryamine measurement. Pharmacol. Rev. 40, 163-187
34 Kim, H. S., Jang, C. G., Park, W. K., Oh, K. W., Rheu, H. M., Cho, D. H., and Oh, S., (1996a) Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. 27, 199-204   DOI   ScienceOn
35 Chiu, C. T., Ma, T., and Ho, I. K., (2005). Attenuation of meth-amphetamine-induced behavioral sensitization in mice by systemic administration of naltrexone. Brain Res. 67, 100-109   DOI
36 Robinson, T. E., and Berridge, K. C., (2001). Incentive-sensitization and addiction mechanisms of action of addictive stimuli. Addiction 96, 103-114   DOI   ScienceOn
37 Kim, H. S., Jang, C. G., Oh, K. W., Oh, S., Rheu, H. M., Rhee, G. S., Seong, Y. H., and Park, W. K., (1998). Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol. 60, 33-42   DOI   ScienceOn
38 Manzanendo, C., Aguilar, M. A., and Minarro, J., (1999). The effects of dopamine D2 and D3 antagonist on spontaneous motor activity and morphine-induced hyperactivity in male mice. Psychopharmacol. 143, 82-88   DOI
39 Shippenberg, T. S., and Herz, A., (1987). Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res. 436, 169-172   DOI   ScienceOn